Apolarity, border rank, and multigraded Hilbert scheme

IF 2.3 1区 数学 Q1 MATHEMATICS
Weronika Buczy'nska, Jaroslaw Buczy'nski
{"title":"Apolarity, border rank, and multigraded Hilbert scheme","authors":"Weronika Buczy'nska, Jaroslaw Buczy'nski","doi":"10.1215/00127094-2021-0048","DOIUrl":null,"url":null,"abstract":"We introduce an elementary method to study the border rank of polynomials and tensors, analogous to the apolarity lemma. This can be used to describe the border rank of all cases uniformly, including those very special ones that resisted a systematic approach. We also define a border rank version of the variety of sums of powers and analyse how it is useful in studying tensors and polynomials with large symmetries. In particular, it can also be applied to provide lower bounds for the border rank of some very interesting tensors, such as the matrix multiplication tensor. We work in a general setting, where the base variety is not necessarily a Segre or Veronese variety, but an arbitrary smooth toric projective variety. A critical ingredient of our work is an irreducible component of a multigraded Hilbert scheme related to the toric variety in question.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0048","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 27

Abstract

We introduce an elementary method to study the border rank of polynomials and tensors, analogous to the apolarity lemma. This can be used to describe the border rank of all cases uniformly, including those very special ones that resisted a systematic approach. We also define a border rank version of the variety of sums of powers and analyse how it is useful in studying tensors and polynomials with large symmetries. In particular, it can also be applied to provide lower bounds for the border rank of some very interesting tensors, such as the matrix multiplication tensor. We work in a general setting, where the base variety is not necessarily a Segre or Veronese variety, but an arbitrary smooth toric projective variety. A critical ingredient of our work is an irreducible component of a multigraded Hilbert scheme related to the toric variety in question.
Apollarity、边秩和多重等级Hilbert方案
我们介绍了一种研究多项式和张量的边秩的初等方法,类似于概化引理。这可以用来统一描述所有案件的边界等级,包括那些抵制系统方法的非常特殊的案件。我们还定义了各种幂和的边秩版本,并分析了它在研究具有大对称性的张量和多项式时是如何有用的。特别地,它还可以用于为一些非常有趣的张量的边界秩提供下界,例如矩阵乘法张量。我们在一个一般的环境中工作,其中基变体不一定是Segre或Veronese变体,而是任意光滑复曲面投影变体。我们工作的一个关键组成部分是与所讨论的复曲面变体相关的多阶希尔伯特方案的不可约分量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信