Rasmussen不变量的推广及其在某些四流形曲面上的应用

IF 2.3 1区 数学 Q1 MATHEMATICS
Ciprian Manolescu, Marco Marengon, Sucharit Sarkar, Michael Willis
{"title":"Rasmussen不变量的推广及其在某些四流形曲面上的应用","authors":"Ciprian Manolescu, Marco Marengon, Sucharit Sarkar, Michael Willis","doi":"10.1215/00127094-2022-0039","DOIUrl":null,"url":null,"abstract":"We extend the definition of Khovanov-Lee homology to links in connected sums of $S^1 \\times S^2$'s, and construct a Rasmussen-type invariant for null-homologous links in these manifolds. For certain links in $S^1 \\times S^2$, we compute the invariant by reinterpreting it in terms of Hochschild homology. As applications, we prove inequalities relating the Rasmussen-type invariant to the genus of surfaces with boundary in the following four-manifolds: $B^2 \\times S^2$, $S^1 \\times B^3$, $\\mathbb{CP}^2$, and various connected sums and boundary sums of these. We deduce that Rasmussen's invariant also gives genus bounds for surfaces inside homotopy 4-balls obtained from $B^4$ by Gluck twists. Therefore, it cannot be used to prove that such homotopy 4-balls are non-standard.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds\",\"authors\":\"Ciprian Manolescu, Marco Marengon, Sucharit Sarkar, Michael Willis\",\"doi\":\"10.1215/00127094-2022-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We extend the definition of Khovanov-Lee homology to links in connected sums of $S^1 \\\\times S^2$'s, and construct a Rasmussen-type invariant for null-homologous links in these manifolds. For certain links in $S^1 \\\\times S^2$, we compute the invariant by reinterpreting it in terms of Hochschild homology. As applications, we prove inequalities relating the Rasmussen-type invariant to the genus of surfaces with boundary in the following four-manifolds: $B^2 \\\\times S^2$, $S^1 \\\\times B^3$, $\\\\mathbb{CP}^2$, and various connected sums and boundary sums of these. We deduce that Rasmussen's invariant also gives genus bounds for surfaces inside homotopy 4-balls obtained from $B^4$ by Gluck twists. Therefore, it cannot be used to prove that such homotopy 4-balls are non-standard.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0039\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0039","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 21

摘要

我们将Khovanov-Lee同调的定义推广到连通和为$S^1\乘S^2$的连接,并构造了这些流形中零同调连接的Rasmussen型不变量。对于$S^1\乘以S^2$中的某些链接,我们通过根据Hochschild同调重新解释它来计算不变量。作为应用,我们证明了以下四个流形中Rasmussen型不变量与具有边界的曲面亏格有关的不等式:$B^2×S^2,$S^1×B^3,$\mathbb{CP}^2,以及它们的各种连通和和边界和。我们推导出Rasmussen不变量也给出了由Gluck扭曲从$B^4$得到的同胚4-球内曲面的亏格界。因此,它不能用来证明这样的同伦球是非标准的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds
We extend the definition of Khovanov-Lee homology to links in connected sums of $S^1 \times S^2$'s, and construct a Rasmussen-type invariant for null-homologous links in these manifolds. For certain links in $S^1 \times S^2$, we compute the invariant by reinterpreting it in terms of Hochschild homology. As applications, we prove inequalities relating the Rasmussen-type invariant to the genus of surfaces with boundary in the following four-manifolds: $B^2 \times S^2$, $S^1 \times B^3$, $\mathbb{CP}^2$, and various connected sums and boundary sums of these. We deduce that Rasmussen's invariant also gives genus bounds for surfaces inside homotopy 4-balls obtained from $B^4$ by Gluck twists. Therefore, it cannot be used to prove that such homotopy 4-balls are non-standard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信