EKOR strata for Shimura varieties with parahoric level structure

IF 2.3 1区 数学 Q1 MATHEMATICS
Xu Shen, Chia-Fu Yu, Chao Zhang
{"title":"EKOR strata for Shimura varieties with parahoric level structure","authors":"Xu Shen, Chia-Fu Yu, Chao Zhang","doi":"10.1215/00127094-2021-0047","DOIUrl":null,"url":null,"abstract":"In this paper we study the geometry of reduction modulo $p$ of the Kisin-Pappas integral models for certain Shimura varieties of abelian type with parahoric level structure. We give some direct and geometric constructions for the EKOR strata on these Shimura varieties, using the theories of $G$-zips and mixed characteristic local $\\mathcal{G}$-Shtukas. We establish several basic properties of these strata, including the smoothness, dimension formula, and closure relation. Moreover, we apply our results to the study of Newton strata and central leaves on these Shimura varieties.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0047","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 22

Abstract

In this paper we study the geometry of reduction modulo $p$ of the Kisin-Pappas integral models for certain Shimura varieties of abelian type with parahoric level structure. We give some direct and geometric constructions for the EKOR strata on these Shimura varieties, using the theories of $G$-zips and mixed characteristic local $\mathcal{G}$-Shtukas. We establish several basic properties of these strata, including the smoothness, dimension formula, and closure relation. Moreover, we apply our results to the study of Newton strata and central leaves on these Shimura varieties.
EKOR地层为志村品种,具有旁倾水平构造
本文研究了一类具有准水平结构的阿贝尔型Shimura变型的Kisin-Pappas积分模型的约简模p的几何性质。我们利用$G$-zips理论和混合特征局部$\mathcal{G}$-Shtukas理论,给出了这些Shimura变异上EKOR地层的一些直接和几何构造。建立了这些地层的几个基本性质,包括光滑度、尺寸公式和闭合关系。此外,我们将我们的结果应用于这些志村品种的牛顿地层和中央叶片的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信