{"title":"关于闭双曲面的极小直径","authors":"Thomas Budzinski, N. Curien, Bram Petri","doi":"10.1215/00127094-2020-0083","DOIUrl":null,"url":null,"abstract":"We prove that the minimal diameter of a hyperbolic compact orientable surface of genus $g$ is asymptotic to $\\log g$ as $g \\to \\infty$. The proof relies on a random construction, which we analyse using lattice point counting theory and the exploration of random trivalent graphs.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On the minimal diameter of closed hyperbolic surfaces\",\"authors\":\"Thomas Budzinski, N. Curien, Bram Petri\",\"doi\":\"10.1215/00127094-2020-0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the minimal diameter of a hyperbolic compact orientable surface of genus $g$ is asymptotic to $\\\\log g$ as $g \\\\to \\\\infty$. The proof relies on a random construction, which we analyse using lattice point counting theory and the exploration of random trivalent graphs.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2020-0083\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2020-0083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
On the minimal diameter of closed hyperbolic surfaces
We prove that the minimal diameter of a hyperbolic compact orientable surface of genus $g$ is asymptotic to $\log g$ as $g \to \infty$. The proof relies on a random construction, which we analyse using lattice point counting theory and the exploration of random trivalent graphs.