关于闭双曲面的极小直径

IF 2.3 1区 数学 Q1 MATHEMATICS
Thomas Budzinski, N. Curien, Bram Petri
{"title":"关于闭双曲面的极小直径","authors":"Thomas Budzinski, N. Curien, Bram Petri","doi":"10.1215/00127094-2020-0083","DOIUrl":null,"url":null,"abstract":"We prove that the minimal diameter of a hyperbolic compact orientable surface of genus $g$ is asymptotic to $\\log g$ as $g \\to \\infty$. The proof relies on a random construction, which we analyse using lattice point counting theory and the exploration of random trivalent graphs.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"On the minimal diameter of closed hyperbolic surfaces\",\"authors\":\"Thomas Budzinski, N. Curien, Bram Petri\",\"doi\":\"10.1215/00127094-2020-0083\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the minimal diameter of a hyperbolic compact orientable surface of genus $g$ is asymptotic to $\\\\log g$ as $g \\\\to \\\\infty$. The proof relies on a random construction, which we analyse using lattice point counting theory and the exploration of random trivalent graphs.\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2020-0083\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2020-0083","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 11

摘要

我们证明了亏格$g$的双曲紧致可定向曲面的最小直径渐近于$\logg$为$g\to\infty$。证明依赖于一个随机结构,我们使用格点计数理论和随机三价图的探索来分析它。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the minimal diameter of closed hyperbolic surfaces
We prove that the minimal diameter of a hyperbolic compact orientable surface of genus $g$ is asymptotic to $\log g$ as $g \to \infty$. The proof relies on a random construction, which we analyse using lattice point counting theory and the exploration of random trivalent graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信