树、通过重心扩展的有理映射的长度谱和Berkovich空间

IF 2.3 1区 数学 Q1 MATHEMATICS
Yusheng Luo
{"title":"树、通过重心扩展的有理映射的长度谱和Berkovich空间","authors":"Yusheng Luo","doi":"10.1215/00127094-2022-0056","DOIUrl":null,"url":null,"abstract":"In this paper, we study the dynamics of degenerating sequences of rational maps on Riemann sphere $\\hat{\\mathbb{C}}$ using $\\mathbb{R}$-trees. Given a sequence of degenerating rational maps, we give two constructions for limiting dynamics on $\\mathbb{R}$-trees: one geometric and one algebraic. The geometric construction uses the ultralimit of rescalings of barycentric extensions of rational maps, while the algebraic construction uses the Berkovich space of complexified Robinson's field. We show the two approaches are equivalent. The limiting dynamics on the $\\mathbb{R}$-tree are analogues to isometric group actions on $\\mathbb{R}$-trees studied in Kleinian groups and Teichmuller theory. We use the limiting map to classify hyperbolic components of rational maps that admit degeneracies with bounded length spectra (multipliers).","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Trees, length spectra for rational maps via barycentric extensions, and Berkovich spaces\",\"authors\":\"Yusheng Luo\",\"doi\":\"10.1215/00127094-2022-0056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the dynamics of degenerating sequences of rational maps on Riemann sphere $\\\\hat{\\\\mathbb{C}}$ using $\\\\mathbb{R}$-trees. Given a sequence of degenerating rational maps, we give two constructions for limiting dynamics on $\\\\mathbb{R}$-trees: one geometric and one algebraic. The geometric construction uses the ultralimit of rescalings of barycentric extensions of rational maps, while the algebraic construction uses the Berkovich space of complexified Robinson's field. We show the two approaches are equivalent. The limiting dynamics on the $\\\\mathbb{R}$-tree are analogues to isometric group actions on $\\\\mathbb{R}$-trees studied in Kleinian groups and Teichmuller theory. We use the limiting map to classify hyperbolic components of rational maps that admit degeneracies with bounded length spectra (multipliers).\",\"PeriodicalId\":11447,\"journal\":{\"name\":\"Duke Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2019-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Duke Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2022-0056\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0056","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9

摘要

在本文中,我们使用$\mathbb{R}$树研究了黎曼球面$\hat{\mathbb}C}}$上有理映射的退化序列的动力学。给定一系列退化有理映射,我们给出了$\mathbb{R}$-树上极限动力学的两个构造:一个是几何的,一个是代数的。几何构造使用有理映射的重心扩展的重缩放的超极限,而代数构造使用复杂Robinson域的Berkovich空间。我们证明了这两种方法是等效的。$\mathbb{R}$-树上的极限动力学类似于Kleinian群和Teichmuller理论中研究的$\mathbb{R}$树上的等距群作用。我们使用极限映射对有理映射的双曲分量进行分类,这些有理映射允许具有有界长度谱的退化(乘数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trees, length spectra for rational maps via barycentric extensions, and Berkovich spaces
In this paper, we study the dynamics of degenerating sequences of rational maps on Riemann sphere $\hat{\mathbb{C}}$ using $\mathbb{R}$-trees. Given a sequence of degenerating rational maps, we give two constructions for limiting dynamics on $\mathbb{R}$-trees: one geometric and one algebraic. The geometric construction uses the ultralimit of rescalings of barycentric extensions of rational maps, while the algebraic construction uses the Berkovich space of complexified Robinson's field. We show the two approaches are equivalent. The limiting dynamics on the $\mathbb{R}$-tree are analogues to isometric group actions on $\mathbb{R}$-trees studied in Kleinian groups and Teichmuller theory. We use the limiting map to classify hyperbolic components of rational maps that admit degeneracies with bounded length spectra (multipliers).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信