On the remainder term of the Weyl law for congruence subgroups of Chevalley groups

IF 2.3 1区 数学 Q1 MATHEMATICS
Tobias Finis, E. Lapid
{"title":"On the remainder term of the Weyl law for congruence subgroups of Chevalley groups","authors":"Tobias Finis, E. Lapid","doi":"10.1215/00127094-2020-0094","DOIUrl":null,"url":null,"abstract":"Let $X$ be a locally symmetric space defined by a simple Chevalley group $G$ and a congruence subgroup of $G(\\mathbb Q)$. In this generality, the Weyl law for $X$ was proved by Lindenstrauss--Venkatesh. In the case where $G$ is simply connected, we sharpen their result by giving a power saving estimate for the remainder term.","PeriodicalId":11447,"journal":{"name":"Duke Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2019-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Duke Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2020-0094","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 6

Abstract

Let $X$ be a locally symmetric space defined by a simple Chevalley group $G$ and a congruence subgroup of $G(\mathbb Q)$. In this generality, the Weyl law for $X$ was proved by Lindenstrauss--Venkatesh. In the case where $G$ is simply connected, we sharpen their result by giving a power saving estimate for the remainder term.
Chevalley群的同余子群的Weyl律的余项
设$X$是一个局部对称空间,由一个简单的Chevalley群$G$和$G(\mathbb Q)$的同余子群$G$定义。在这种通用性下,Lindenstrauss—Venkatesh证明了$X$的Weyl定律。在$G$单连通的情况下,我们通过给出剩余项的省电估计来锐化它们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
61
审稿时长
6-12 weeks
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信