凸域的辛同调与Clarke对偶

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Alberto Abbondandolo, Jungsoo Kang
{"title":"凸域的辛同调与Clarke对偶","authors":"Alberto Abbondandolo, Jungsoo Kang","doi":"10.1215/00127094-2021-0025","DOIUrl":null,"url":null,"abstract":"We prove that the Floer complex that is associated with a convex Hamiltonian function on $\\mathbb{R}^{2n}$ is isomorphic to the Morse complex of Clarke's dual action functional that is associated with the Fenchel-dual Hamiltonian. This isomorphism preserves the action filtrations. As a corollary, we obtain that the symplectic capacity from the symplectic homology of a convex domain with smooth boundary coincides with the minimal action of closed characteristics on its boundary.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Symplectic homology of convex domains and Clarke’s duality\",\"authors\":\"Alberto Abbondandolo, Jungsoo Kang\",\"doi\":\"10.1215/00127094-2021-0025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the Floer complex that is associated with a convex Hamiltonian function on $\\\\mathbb{R}^{2n}$ is isomorphic to the Morse complex of Clarke's dual action functional that is associated with the Fenchel-dual Hamiltonian. This isomorphism preserves the action filtrations. As a corollary, we obtain that the symplectic capacity from the symplectic homology of a convex domain with smooth boundary coincides with the minimal action of closed characteristics on its boundary.\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2019-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/00127094-2021-0025\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2021-0025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 12

摘要

我们证明了与$\mathbb{R}^{2n}$上的凸Hamilton函数相关的Floer复形同构于与Fenchel对偶Hamilton相关的Clarke对偶作用泛函的Morse复形。这种同构保留了动作过滤。作为推论,我们从具有光滑边界的凸域的辛同调中得到了辛容量与闭特征对其边界的最小作用一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Symplectic homology of convex domains and Clarke’s duality
We prove that the Floer complex that is associated with a convex Hamiltonian function on $\mathbb{R}^{2n}$ is isomorphic to the Morse complex of Clarke's dual action functional that is associated with the Fenchel-dual Hamiltonian. This isomorphism preserves the action filtrations. As a corollary, we obtain that the symplectic capacity from the symplectic homology of a convex domain with smooth boundary coincides with the minimal action of closed characteristics on its boundary.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信