Ciprian Manolescu, Marco Marengon, Sucharit Sarkar, Michael Willis
{"title":"A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds","authors":"Ciprian Manolescu, Marco Marengon, Sucharit Sarkar, Michael Willis","doi":"10.1215/00127094-2022-0039","DOIUrl":null,"url":null,"abstract":"We extend the definition of Khovanov-Lee homology to links in connected sums of $S^1 \\times S^2$'s, and construct a Rasmussen-type invariant for null-homologous links in these manifolds. For certain links in $S^1 \\times S^2$, we compute the invariant by reinterpreting it in terms of Hochschild homology. As applications, we prove inequalities relating the Rasmussen-type invariant to the genus of surfaces with boundary in the following four-manifolds: $B^2 \\times S^2$, $S^1 \\times B^3$, $\\mathbb{CP}^2$, and various connected sums and boundary sums of these. We deduce that Rasmussen's invariant also gives genus bounds for surfaces inside homotopy 4-balls obtained from $B^4$ by Gluck twists. Therefore, it cannot be used to prove that such homotopy 4-balls are non-standard.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 21
Abstract
We extend the definition of Khovanov-Lee homology to links in connected sums of $S^1 \times S^2$'s, and construct a Rasmussen-type invariant for null-homologous links in these manifolds. For certain links in $S^1 \times S^2$, we compute the invariant by reinterpreting it in terms of Hochschild homology. As applications, we prove inequalities relating the Rasmussen-type invariant to the genus of surfaces with boundary in the following four-manifolds: $B^2 \times S^2$, $S^1 \times B^3$, $\mathbb{CP}^2$, and various connected sums and boundary sums of these. We deduce that Rasmussen's invariant also gives genus bounds for surfaces inside homotopy 4-balls obtained from $B^4$ by Gluck twists. Therefore, it cannot be used to prove that such homotopy 4-balls are non-standard.