A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Ciprian Manolescu, Marco Marengon, Sucharit Sarkar, Michael Willis
{"title":"A generalization of Rasmussen’s invariant, with applications to surfaces in some four-manifolds","authors":"Ciprian Manolescu, Marco Marengon, Sucharit Sarkar, Michael Willis","doi":"10.1215/00127094-2022-0039","DOIUrl":null,"url":null,"abstract":"We extend the definition of Khovanov-Lee homology to links in connected sums of $S^1 \\times S^2$'s, and construct a Rasmussen-type invariant for null-homologous links in these manifolds. For certain links in $S^1 \\times S^2$, we compute the invariant by reinterpreting it in terms of Hochschild homology. As applications, we prove inequalities relating the Rasmussen-type invariant to the genus of surfaces with boundary in the following four-manifolds: $B^2 \\times S^2$, $S^1 \\times B^3$, $\\mathbb{CP}^2$, and various connected sums and boundary sums of these. We deduce that Rasmussen's invariant also gives genus bounds for surfaces inside homotopy 4-balls obtained from $B^4$ by Gluck twists. Therefore, it cannot be used to prove that such homotopy 4-balls are non-standard.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2019-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/00127094-2022-0039","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 21

Abstract

We extend the definition of Khovanov-Lee homology to links in connected sums of $S^1 \times S^2$'s, and construct a Rasmussen-type invariant for null-homologous links in these manifolds. For certain links in $S^1 \times S^2$, we compute the invariant by reinterpreting it in terms of Hochschild homology. As applications, we prove inequalities relating the Rasmussen-type invariant to the genus of surfaces with boundary in the following four-manifolds: $B^2 \times S^2$, $S^1 \times B^3$, $\mathbb{CP}^2$, and various connected sums and boundary sums of these. We deduce that Rasmussen's invariant also gives genus bounds for surfaces inside homotopy 4-balls obtained from $B^4$ by Gluck twists. Therefore, it cannot be used to prove that such homotopy 4-balls are non-standard.
Rasmussen不变量的推广及其在某些四流形曲面上的应用
我们将Khovanov-Lee同调的定义推广到连通和为$S^1\乘S^2$的连接,并构造了这些流形中零同调连接的Rasmussen型不变量。对于$S^1\乘以S^2$中的某些链接,我们通过根据Hochschild同调重新解释它来计算不变量。作为应用,我们证明了以下四个流形中Rasmussen型不变量与具有边界的曲面亏格有关的不等式:$B^2×S^2,$S^1×B^3,$\mathbb{CP}^2,以及它们的各种连通和和边界和。我们推导出Rasmussen不变量也给出了由Gluck扭曲从$B^4$得到的同胚4-球内曲面的亏格界。因此,它不能用来证明这样的同伦球是非标准的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信