Communications Physics最新文献

筛选
英文 中文
Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints. Elf自动编码器用于无监督探索平面带材料使用电子带结构指纹。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-01-17 DOI: 10.1038/s42005-025-01936-2
Henry Kelbrick Pentz, Thomas Warford, Ivan Timokhin, Hongpeng Zhou, Qian Yang, Anupam Bhattacharya, Artem Mishchenko
{"title":"Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints.","authors":"Henry Kelbrick Pentz, Thomas Warford, Ivan Timokhin, Hongpeng Zhou, Qian Yang, Anupam Bhattacharya, Artem Mishchenko","doi":"10.1038/s42005-025-01936-2","DOIUrl":"10.1038/s42005-025-01936-2","url":null,"abstract":"<p><p>Two-dimensional materials with flat electronic bands are promising for realising exotic quantum phenomena such as unconventional superconductivity and nontrivial topology. However, exploring their vast chemical space is a significant challenge. Here we introduce elf, an unsupervised convolutional autoencoder that encodes electronic band structure images into fingerprint vectors, enabling the autonomous clustering of materials by electronic properties beyond traditional chemical paradigms. Unsupervised visualisation of the fingerprint space then uncovers hidden chemical trends and identifies promising candidates based on similarities to well-studied exemplars. This approach complements high-throughput ab initio methods by rapidly screening candidates and guiding further investigations into the mechanisms underlying flat-band physics. The elf autoencoder is a powerful tool for autonomous discovery of unexplored flat-band materials, enabling unbiased identification of compounds with desirable electronic properties across the 2D chemical space.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"25"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Divertor shaping with neutral baffling as a solution to the tokamak power exhaust challenge. 采用中性挡板的导流器成型解决托卡马克动力排气难题。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-05-23 DOI: 10.1038/s42005-025-02121-1
Kevin Verhaegh, James Harrison, David Moulton, Bruce Lipschultz, Nicola Lonigro, Nick Osborne, Peter Ryan, Christian Theiler, Tijs Wijkamp, Dominik Brida, Cyd Cowley, Gijs Derks, Rhys Doyle, Fabio Federici, Bob Kool, Olivier Février, Antti Hakola, Stuart Henderson, Holger Reimerdes, Andrew Thornton, Nicola Vianello, Marco Wischmeier, Lingyan Xiang
{"title":"Divertor shaping with neutral baffling as a solution to the tokamak power exhaust challenge.","authors":"Kevin Verhaegh, James Harrison, David Moulton, Bruce Lipschultz, Nicola Lonigro, Nick Osborne, Peter Ryan, Christian Theiler, Tijs Wijkamp, Dominik Brida, Cyd Cowley, Gijs Derks, Rhys Doyle, Fabio Federici, Bob Kool, Olivier Février, Antti Hakola, Stuart Henderson, Holger Reimerdes, Andrew Thornton, Nicola Vianello, Marco Wischmeier, Lingyan Xiang","doi":"10.1038/s42005-025-02121-1","DOIUrl":"https://doi.org/10.1038/s42005-025-02121-1","url":null,"abstract":"<p><p>Exhausting power from the hot fusion core to the plasma-facing components is one fusion energy's biggest challenges. The MAST Upgrade tokamak uniquely integrates strong containment of neutrals within the exhaust area (divertor) with extreme divertor shaping capability. By systematically altering the divertor shape, this study shows the strongest evidence to date to our knowledge that long-legged divertors with a high magnetic field gradient (total flux expansion) deliver key power exhaust benefits without adversely impacting the hot fusion core. These benefits are already achieved with relatively modest geometry adjustments that are more feasible to integrate in reactor designs. Benefits include reduced target heat loads and improved access to, and stability of, a neutral gas buffer that 'shields' the target and enhances power exhaust (detachment). Analysis and model comparisons shows these benefits are obtained by combining multiple shaping aspects: long-legged divertors have expanded plasma-neutral interaction volume that drive reductions in particle and power loads, while total flux expansion enhances detachment access and stability. Containing the neutrals in the exhaust area with physical structures further augments these shaping benefits. These results demonstrate strategic variation in the divertor geometry and magnetic topology is a potential solution to one of fusion's power exhaust challenge.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"215"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098118/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144207869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A century of Bose-Einstein condensation. 一个世纪的玻色-爱因斯坦凝聚。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-07-01 DOI: 10.1038/s42005-025-02195-x
Nick P Proukakis
{"title":"A century of Bose-Einstein condensation.","authors":"Nick P Proukakis","doi":"10.1038/s42005-025-02195-x","DOIUrl":"10.1038/s42005-025-02195-x","url":null,"abstract":"<p><p>Bose-Einstein Condensation is a phenomenon at the heart of many of the past century's most intriguing and fundamental manifestations, such as superfluidity and superconductivity: it was discovered theoretically some 100 years ago, and unequivocally experimentally demonstrated in the context of weakly-interacting gases 30 years ago. Since then, it has revolutionised our understanding of the collective quantum behaviour of matter. Such a phenomenon manifests itself across all physical scales, from the nuclear and atomic, all the way to the astrophysical, and has paved the way for novel technological applications.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"264"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12213606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144559437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revealing electronic correlations in YNi2B2C using photoemission spectroscopy. 利用光电发射光谱揭示YNi2B2C中的电子相关性。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-06-17 DOI: 10.1038/s42005-025-02180-4
Aki Pulkkinen, Geoffroy Kremer, Vladimir N Strocov, Frank Weber, Ján Minár, Claude Monney
{"title":"Revealing electronic correlations in YNi<sub>2</sub>B<sub>2</sub>C using photoemission spectroscopy.","authors":"Aki Pulkkinen, Geoffroy Kremer, Vladimir N Strocov, Frank Weber, Ján Minár, Claude Monney","doi":"10.1038/s42005-025-02180-4","DOIUrl":"10.1038/s42005-025-02180-4","url":null,"abstract":"<p><p>The low-energy electronic structure of materials is crucial to understanding and modeling their physical properties. Angle-resolved photoemission spectroscopy (ARPES) is the best experimental technique to measure this electronic structure, but its interpretation can be delicate. Here we use a combination of density functional theory (DFT) and one-step model of photoemission to decipher the soft x-ray ARPES spectra of the quaternary borocarbide superconductor YNi<sub>2</sub>B<sub>2</sub>C. Our analysis reveals the presence of moderate electronic correlations beyond the semilocal DFT within the generalized gradient approximation. We show that DFT and the full potential Korringa-Kohn-Rostoker method combined with the dynamical mean field theory (DFT+DMFT) with average Coulomb interaction <i>U</i> = 3.0 eV and the exchange energy <i>J</i> = 0.9 eV applied to the Ni <i>d</i>-states are necessary for reproducing the experimentally observed SX-ARPES spectra.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"256"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12173938/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144332595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A dephasing sweet spot with enhanced dipolar coupling. 增强偶极耦合的减相甜点。
IF 5.8 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-07-23 DOI: 10.1038/s42005-025-02216-9
Jann H Ungerer, Alessia Pally, Stefano Bosco, Artem Kononov, Deepankar Sarmah, Sebastian Lehmann, Claes Thelander, Ville F Maisi, Pasquale Scarlino, Daniel Loss, Andreas Baumgartner, Christian Schönenberger
{"title":"A dephasing sweet spot with enhanced dipolar coupling.","authors":"Jann H Ungerer, Alessia Pally, Stefano Bosco, Artem Kononov, Deepankar Sarmah, Sebastian Lehmann, Claes Thelander, Ville F Maisi, Pasquale Scarlino, Daniel Loss, Andreas Baumgartner, Christian Schönenberger","doi":"10.1038/s42005-025-02216-9","DOIUrl":"10.1038/s42005-025-02216-9","url":null,"abstract":"<p><p>Two-level systems (TLSs) are the basic units of quantum computers but face a trade-off between operation speed and coherence due to shared coupling paths. Here, we investigate a TLS given by a singlet-triplet (ST+) transition. We identify a magnetic-field configuration that maximizes dipole coupling while minimizing total dephasing, forming a compromise-free sweet spot that mitigates this fundamental trade-off. The TLS is implemented in a crystal-phase-defined double-quantum dot in an InAs nanowire. Using a superconducting resonator, we measure the spin-orbit interaction (SOI) gap, the spin-photon coupling strength, and the total TLS dephasing rate as a function of the in-plane magnetic-field orientation. Our theoretical description postulates phonons as the dominant noise source. The compromise-free sweet spot originates from the SOI, suggesting that it is not restricted to this material platform but might find applications in any material with SOI. These findings pave the way for enhanced nanomaterial engineering for next-generation qubit technologies.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"306"},"PeriodicalIF":5.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286847/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144728456","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hilbert space fragmentation at the origin of disorder-free localization in the lattice Schwinger model. 晶格Schwinger模型中无无序局部化起源处的Hilbert空间碎片。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-04-18 DOI: 10.1038/s42005-025-02039-8
Jared Jeyaretnam, Tanmay Bhore, Jesse J Osborne, Jad C Halimeh, Zlatko Papić
{"title":"Hilbert space fragmentation at the origin of disorder-free localization in the lattice Schwinger model.","authors":"Jared Jeyaretnam, Tanmay Bhore, Jesse J Osborne, Jad C Halimeh, Zlatko Papić","doi":"10.1038/s42005-025-02039-8","DOIUrl":"https://doi.org/10.1038/s42005-025-02039-8","url":null,"abstract":"<p><p>Lattice gauge theories, the discrete counterparts of continuum gauge theories, provide a rich framework for studying non-equilibrium quantum dynamics. Recent studies suggest disorder-free localization in the lattice Schwinger model, but its origin remains unclear. Using a combination of analytical and numerical methods, we show that Hilbert space fragmentation emerges in the strong coupling limit, constraining particle dynamics and causing sharp jumps in entanglement entropy growth within charge sectors. By analyzing jump statistics, we find that entanglement growth follows a single-logarithmic or weak power-law dependence on time, rather than a double-logarithmic form. This suggests a single ergodicity-breaking regime that mimics many-body localization in finite systems due to fragmentation effects. Our findings clarify the nature of disorder-free localization and its distinction from conventional many-body localization, highlighting how gauge constraints influence thermalization in lattice gauge theories.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"172"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12008026/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143964786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pressure induced transition from chiral charge order to time-reversal symmetry-breaking superconducting state in Nb-doped CsV3Sb5. nb掺杂CsV3Sb5从手性荷序到时间反转对称破缺超导态的压力诱导转变。
IF 5.8 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-08-02 DOI: 10.1038/s42005-025-02235-6
Jennifer N Graham, Shams Sohel Islam, Vahid Sazgari, Yongka Li, Hanbin Deng, Gianluca Janka, Yigui Zhong, Orion Gerguri, Petr Král, Andrin Doll, Izabela Biało, Johan Chang, Zaher Salman, Andreas Suter, Thomas Prokscha, Yugui Yao, Kozo Okazaki, Hubertus Luetkens, Rustem Khasanov, Zhiwei Wang, Jia-Xin Yin, Zurab Guguchia
{"title":"Pressure induced transition from chiral charge order to time-reversal symmetry-breaking superconducting state in Nb-doped CsV<sub>3</sub>Sb<sub>5</sub>.","authors":"Jennifer N Graham, Shams Sohel Islam, Vahid Sazgari, Yongka Li, Hanbin Deng, Gianluca Janka, Yigui Zhong, Orion Gerguri, Petr Král, Andrin Doll, Izabela Biało, Johan Chang, Zaher Salman, Andreas Suter, Thomas Prokscha, Yugui Yao, Kozo Okazaki, Hubertus Luetkens, Rustem Khasanov, Zhiwei Wang, Jia-Xin Yin, Zurab Guguchia","doi":"10.1038/s42005-025-02235-6","DOIUrl":"10.1038/s42005-025-02235-6","url":null,"abstract":"<p><p>Understanding how time-reversal symmetry (TRS) breaks in quantum materials is key to uncovering new states of matter and advancing quantum technologies. However, unraveling the interplay between TRS breaking, charge order, and superconductivity in kagome metals continues to be a compelling challenge. Here, we investigate the kagome metal Cs(V<sub>1-<i>x</i></sub> Nb <sub><i>x</i></sub> )<sub>3</sub>Sb<sub>5</sub> with <i>x</i> = 0.07 using muon spin rotation (<i>μ</i>SR), alternating current (AC) magnetic susceptibility, and scanning tunneling microscopy (STM), under combined tuning by chemical doping, hydrostatic pressure, magnetic field, and depth from the surface. We find that TRS breaking in the bulk emerges below 40 K-lower than the charge order onset at 58 K-while near the surface, TRS breaking onsets at 58 K and is twice as strong. Niobium doping raises the superconducting critical temperature from 2.5 K to 4.4 K. Under pressure, both the critical temperature and superfluid density double, with TRS-breaking superconductivity appearing above 0.85 GPa. These findings reveal a depth-tunable TRS-breaking state and unconventional superconducting behavior in kagome systems.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"318"},"PeriodicalIF":5.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12317846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144783587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spectroscopy of two-dimensional interacting lattice electrons using symmetry-aware neural backflow transformations. 利用对称感知神经回流变换的二维相互作用晶格电子光谱学。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-01-30 DOI: 10.1038/s42005-025-01955-z
Imelda Romero, Jannes Nys, Giuseppe Carleo
{"title":"Spectroscopy of two-dimensional interacting lattice electrons using symmetry-aware neural backflow transformations.","authors":"Imelda Romero, Jannes Nys, Giuseppe Carleo","doi":"10.1038/s42005-025-01955-z","DOIUrl":"10.1038/s42005-025-01955-z","url":null,"abstract":"<p><p>Neural networks have shown to be a powerful tool to represent the ground state of quantum many-body systems, including fermionic systems. However, efficiently integrating lattice symmetries into neural representations remains a significant challenge. In this work, we introduce a framework for embedding lattice symmetries in fermionic wavefunctions and demonstrate its ability to target both ground states and low-lying excitations. Using group-equivariant neural backflow transformations, we study the <i>t</i>-<i>V</i> model on a square lattice away from half-filling. Our symmetry-aware backflow significantly improves ground-state energies and yields accurate low-energy excitations for lattices up to 10 × 10. We also compute accurate two-point density-correlation functions and the structure factor to identify phase transitions and critical points. These findings introduce a symmetry-aware framework important for studying quantum materials and phase transitions.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"46"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11779646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143078810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sparse intensity sampling for ultrafast full-field reconstruction in low-dimensional photonic systems. 低维光子系统中超快全场重建的稀疏强度采样。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-04-10 DOI: 10.1038/s42005-025-02079-0
Egor Manuylovich
{"title":"Sparse intensity sampling for ultrafast full-field reconstruction in low-dimensional photonic systems.","authors":"Egor Manuylovich","doi":"10.1038/s42005-025-02079-0","DOIUrl":"https://doi.org/10.1038/s42005-025-02079-0","url":null,"abstract":"<p><p>Phase-sensitive measurements usually utilize interferometric techniques to retrieve the optical phase. However, when the feature space of an electromagnetic field is inherently low dimensional, most field parameters can be extracted from intensity measurements only. However, even the fastest of the previously published intensity-only methods have too high a computational complexity to be applicable at high data rates and, most importantly, require data from CCD cameras, which are generally slow. This paper shows how a few intensity measurements taken from properly placed photodetectors can be used to reconstruct the complex-valued field fully in systems with low-dimensional feature space. The presented method allows full-field characterization in few-mode fibers and does not employ a reference beam. This result is 3 orders of magnitude faster than the fastest previously published result and uses 3 orders of magnitude fewer photodetectors, allowing retrieval of mode amplitudes and phases relative to the fundamental mode using only several photodetectors. This approach enables ultrafast applications of intensity-only mode decomposition method, including pulse-to-pulse laser beam characterization, providing an essential tool for experimental exploration of the modal dynamics in spatiotemporal modelocked systems. It can also be applied to ultrafast sensing in few-mode fibers and for coherent mode division-multiplexed receivers using quadratic detectors only.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"149"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143969803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterising high-order interdependence via entropic conjugation. 通过熵共轭表征高阶相互依赖关系。
IF 5.8 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-08-23 DOI: 10.1038/s42005-025-02250-7
Fernando E Rosas, Aaron J Gutknecht, Pedro A M Mediano, Michael Gastpar
{"title":"Characterising high-order interdependence via entropic conjugation.","authors":"Fernando E Rosas, Aaron J Gutknecht, Pedro A M Mediano, Michael Gastpar","doi":"10.1038/s42005-025-02250-7","DOIUrl":"https://doi.org/10.1038/s42005-025-02250-7","url":null,"abstract":"<p><p>High-order phenomena are pervasive across complex systems, yet their formal characterisation remains a formidable challenge. The literature provides various information-theoretic quantities that capture high-order interdependencies, but their conceptual foundations and mutual relationships are not well understood. The lack of unifying principles underpinning these quantities impedes a principled selection of appropriate analytical tools for guiding applications. Here we introduce <i>entropic conjugation</i> as a formal principle to investigate the space of possible high-order measures, which clarifies the nature of the existent high-order measures while revealing gaps in the literature. Additionally, entropic conjugation leads to notions of symmetry and skew-symmetry which serve as key indicators ensuring a balanced account of high-order interdependencies. Our analyses highlight the O-information as the unique skew-symmetric measure whose estimation cost scales linearly with system size, which spontaneously emerges as a natural axis of variation among high-order quantities in real-world and simulated systems.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"347"},"PeriodicalIF":5.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12374842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144945688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信