量子坐标,事件的局域化,以及量子空穴论证。

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-04-30 DOI:10.1038/s42005-025-02084-3
Viktoria Kabel, Anne-Catherine de la Hamette, Luca Apadula, Carlo Cepollaro, Henrique Gomes, Jeremy Butterfield, Časlav Brukner
{"title":"量子坐标,事件的局域化,以及量子空穴论证。","authors":"Viktoria Kabel, Anne-Catherine de la Hamette, Luca Apadula, Carlo Cepollaro, Henrique Gomes, Jeremy Butterfield, Časlav Brukner","doi":"10.1038/s42005-025-02084-3","DOIUrl":null,"url":null,"abstract":"<p><p>The study of quantum reference frames (QRFs) is motivated by the idea of taking into account the quantum properties of the reference frames used, explicitly or implicitly, in our description of physical systems. Like classical reference frames, QRFs can be used to define physical quantities relationally. Unlike their classical analogue, they relativise the notions of superposition and entanglement. Here, we explain this feature by examining how configurations or locations are identified across different branches in superposition. We show that, in the presence of symmetries, whether a system is in \"the same\" or \"different\" configurations across the branches depends on the choice of QRF. Hence, sameness and difference - and thus superposition and entanglement - lose their absolute meaning. We apply these ideas to the context of semi-classical spacetimes in superposition and use coincidences of four scalar fields to construct a comparison map between spacetime points in the different branches. This reveals that the localisation of an event is frame-dependent. We discuss the implications for indefinite causal order and the locality of interaction and conclude with a generalisation of Einstein's hole argument to the quantum context.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"185"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040706/pdf/","citationCount":"0","resultStr":"{\"title\":\"Quantum coordinates, localisation of events, and the quantum hole argument.\",\"authors\":\"Viktoria Kabel, Anne-Catherine de la Hamette, Luca Apadula, Carlo Cepollaro, Henrique Gomes, Jeremy Butterfield, Časlav Brukner\",\"doi\":\"10.1038/s42005-025-02084-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The study of quantum reference frames (QRFs) is motivated by the idea of taking into account the quantum properties of the reference frames used, explicitly or implicitly, in our description of physical systems. Like classical reference frames, QRFs can be used to define physical quantities relationally. Unlike their classical analogue, they relativise the notions of superposition and entanglement. Here, we explain this feature by examining how configurations or locations are identified across different branches in superposition. We show that, in the presence of symmetries, whether a system is in \\\"the same\\\" or \\\"different\\\" configurations across the branches depends on the choice of QRF. Hence, sameness and difference - and thus superposition and entanglement - lose their absolute meaning. We apply these ideas to the context of semi-classical spacetimes in superposition and use coincidences of four scalar fields to construct a comparison map between spacetime points in the different branches. This reveals that the localisation of an event is frame-dependent. We discuss the implications for indefinite causal order and the locality of interaction and conclude with a generalisation of Einstein's hole argument to the quantum context.</p>\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\"8 1\",\"pages\":\"185\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s42005-025-02084-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-02084-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

量子参照系(QRFs)的研究是由考虑在我们描述物理系统时所使用的参照系的量子特性的想法所激发的。像经典参考系一样,qrf可以用来定义物理量的关系。与经典的类比不同,它们将叠加和纠缠的概念相对化。在这里,我们通过检查如何在重叠的不同分支中识别配置或位置来解释这一特性。我们表明,在存在对称性的情况下,系统在分支上是否处于“相同”或“不同”的配置取决于QRF的选择。因此,相同和差异——以及叠加和纠缠——失去了它们的绝对意义。我们将这些思想应用于半经典时空叠加的背景下,并利用四个标量场的重合来构造不同分支中时空点之间的比较映射。这表明事件的本地化是依赖于框架的。我们讨论了不确定的因果顺序和相互作用的局部性的含义,并总结了爱因斯坦的空穴论证在量子背景下的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum coordinates, localisation of events, and the quantum hole argument.

The study of quantum reference frames (QRFs) is motivated by the idea of taking into account the quantum properties of the reference frames used, explicitly or implicitly, in our description of physical systems. Like classical reference frames, QRFs can be used to define physical quantities relationally. Unlike their classical analogue, they relativise the notions of superposition and entanglement. Here, we explain this feature by examining how configurations or locations are identified across different branches in superposition. We show that, in the presence of symmetries, whether a system is in "the same" or "different" configurations across the branches depends on the choice of QRF. Hence, sameness and difference - and thus superposition and entanglement - lose their absolute meaning. We apply these ideas to the context of semi-classical spacetimes in superposition and use coincidences of four scalar fields to construct a comparison map between spacetime points in the different branches. This reveals that the localisation of an event is frame-dependent. We discuss the implications for indefinite causal order and the locality of interaction and conclude with a generalisation of Einstein's hole argument to the quantum context.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信