Communications Physics最新文献

筛选
英文 中文
Speeding up adiabatic ion transport in macroscopic multi-Penning-trap stacks for high-precision experiments. 加速宏观多彭宁阱堆中绝热离子输运的高精度实验。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-03-19 DOI: 10.1038/s42005-025-02031-2
Moritz von Boehn, Jan Schaper, Julia A Coenders, Johannes Brombacher, Teresa Meiners, Malte Niemann, Juan M Cornejo, Stefan Ulmer, Christian Ospelkaus
{"title":"Speeding up adiabatic ion transport in macroscopic multi-Penning-trap stacks for high-precision experiments.","authors":"Moritz von Boehn, Jan Schaper, Julia A Coenders, Johannes Brombacher, Teresa Meiners, Malte Niemann, Juan M Cornejo, Stefan Ulmer, Christian Ospelkaus","doi":"10.1038/s42005-025-02031-2","DOIUrl":"10.1038/s42005-025-02031-2","url":null,"abstract":"<p><p>Multi-Penning traps are an excellent tool for high-precision tests of fundamental physics in a variety of applications, ranging from atomic mass measurements to symmetry tests. In such experiments, single ions are transferred between distinct trap regions as part of the experimental sequence, resulting in measurement dead time and heating of the ion motions. Here, we report a procedure to reduce the duration of adiabatic single-ion transport in macroscopic multi-Penning-trap stacks by using ion-transport waveforms and electronic filter predistortion. For this purpose, transport adiabaticity of a single laser-cooled <sup>9</sup>Be<sup>+</sup>is analyzed via Doppler-broadened sideband spectra obtained by stimulated Raman spectroscopy, yielding an average heating per transport of 2.6 ± 4.0 quanta for transport times between 7 and 15 ms. Applying these techniques to current multi-Penning trap experiments could reduce ion transport times by up to three orders of magnitude. Furthermore, these results are a key requisite for implementing quantum logic spectroscopy in Penning trap experiments.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"107"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11922740/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Monolithic silicon nitride electro-optic modulator enabled by optically-assisted poling. 光辅助极化实现的单片氮化硅电光调制器。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-04-08 DOI: 10.1038/s42005-025-02071-8
Christian Lafforgue, Boris Zabelich, Camille-Sophie Brès
{"title":"Monolithic silicon nitride electro-optic modulator enabled by optically-assisted poling.","authors":"Christian Lafforgue, Boris Zabelich, Camille-Sophie Brès","doi":"10.1038/s42005-025-02071-8","DOIUrl":"https://doi.org/10.1038/s42005-025-02071-8","url":null,"abstract":"<p><p>Electro-optic (EO) modulation is a key functionality to have on-chip. However, achieving a notable linear EO effect in stoichiometric silicon nitride has been a persistent challenge due to the material's intrinsic properties. Recent advancements revealed that the displacement of thermally excited charge carriers under a high electric field induces a second-order nonlinearity in silicon nitride, thus enabling the linear EO effect in this platform regardless of the material's inversion symmetry. In this work, we introduce optically-assisted poling of a silicon nitride microring resonator, removing the need for high-temperature processing of the device. The optical stimulation of charges avoids the technical constraints due to elevated temperature. By optimizing the poling process, we experimentally obtain a long-term effective second-order nonlinearity <math> <msubsup><mrow><mi>χ</mi></mrow> <mrow><mi>eff</mi></mrow> <mrow><mrow><mo>(</mo> <mrow><mn>2</mn></mrow> <mo>)</mo></mrow> </mrow> </msubsup> </math> of 1.218 pm/V. Additionally, we measure the high-speed EO response of the modulator, showing a bandwidth of 4 GHz, only limited by the quality factor of the microring resonator. This work goes towards the implementation of monolithic, compact silicon nitride EO modulators, a necessary component for high-density integrated optical signal processing.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"142"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978502/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143957677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fast high-resolution lifetime image reconstruction for positron lifetime tomography. 快速高分辨率寿命图像重建正电子寿命断层扫描。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-04-26 DOI: 10.1038/s42005-025-02100-6
Bangyan Huang, Zipai Wang, Xinjie Zeng, Amir H Goldan, Jinyi Qi
{"title":"Fast high-resolution lifetime image reconstruction for positron lifetime tomography.","authors":"Bangyan Huang, Zipai Wang, Xinjie Zeng, Amir H Goldan, Jinyi Qi","doi":"10.1038/s42005-025-02100-6","DOIUrl":"https://doi.org/10.1038/s42005-025-02100-6","url":null,"abstract":"<p><p>Due to the ortho-positronium formed prior to the annihilation, the lifetime of a positron is sensitive to the tissue microenvironment and can potentially provide valuable information for monitoring disease progression and treatment response. However, the lifetime of positrons before annihilation has long been overlooked in current positron emission tomography (PET). Here we develop a positron lifetime image reconstruction method called SIMPLE (Statistical IMage reconstruction of Positron Lifetime via time-wEighting) and demonstrate its performance using a real scan on a time-of-flight PET scanner. The SIMPLE method achieves high-resolution positron lifetime imaging of extended heterogeneous tissue illuminated by a <sup>22</sup>Na point source, successfully resolving the boundary between muscle and fat. It delivers spatial resolution comparable to that of conventional PET activity images while maintaining a computational cost equivalent to reconstructing two PET images. This work paves the way for clinical translation of high-resolution positron lifetime imaging.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"181"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031669/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143976270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppressing nonperturbative gauge errors in the thermodynamic limit using local pseudogenerators. 利用局部伪发电机抑制热力学极限中的非微扰规整误差
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-03-18 DOI: 10.1038/s42005-025-02035-y
Maarten Van Damme, Julius Mildenberger, Fabian Grusdt, Philipp Hauke, Jad C Halimeh
{"title":"Suppressing nonperturbative gauge errors in the thermodynamic limit using local pseudogenerators.","authors":"Maarten Van Damme, Julius Mildenberger, Fabian Grusdt, Philipp Hauke, Jad C Halimeh","doi":"10.1038/s42005-025-02035-y","DOIUrl":"10.1038/s42005-025-02035-y","url":null,"abstract":"<p><p>With recent progress in quantum simulations of lattice-gauge theories, it is becoming a pressing question how to reliably protect the gauge symmetry that defines such models. Recently, an experimentally feasible gauge-protection scheme has been proposed that is based on the concept of a local pseudogenerator, which is required to act identically to the full gauge-symmetry generator in the target gauge sector, but not necessarily outside of it. The scheme has been analytically and numerically shown to reliably stabilize lattice gauge theories in the presence of perturbative errors on finite-size analog quantum-simulation devices. In this work, through uniform matrix product state calculations, we demonstrate the efficacy of this scheme for nonperturbative errors in analog quantum simulators up to all accessible evolution times in the thermodynamic limit, where it is a priori neither established nor expected that this scheme will succeed. Our results indicate the presence of an emergent gauge symmetry in an adjusted gauge theory even in the thermodynamic limit, which is beyond our analytic predictions. Additionally, we show through quantum circuit model calculations that gauge protection with local pseudogenerators also successfully suppresses gauge violations on finite quantum computers that discretize time through Trotterization. Our results firm up the robustness and feasibility of the local pseudogenerator as a viable tool for enforcing gauge invariance in modern quantum simulators and noisy intermediate-scale quantum devices.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"106"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11919730/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143669261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Aerosol size determination via light scattering of viruses and protein complexes. 通过病毒和蛋白质复合物的光散射测定气溶胶大小。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-04-12 DOI: 10.1038/s42005-025-02076-3
Lena Worbs, Tej Varma Yenupuri, Tong You, Filipe R N C Maia
{"title":"Aerosol size determination via light scattering of viruses and protein complexes.","authors":"Lena Worbs, Tej Varma Yenupuri, Tong You, Filipe R N C Maia","doi":"10.1038/s42005-025-02076-3","DOIUrl":"https://doi.org/10.1038/s42005-025-02076-3","url":null,"abstract":"<p><p>The study of ultrafine particle aerosols, those with particle diameters of 100 nm or less, is important due to their impact on our health and environment. However, given their small sizes, such particles can be difficult to measure and trace. Most common optical methods are unable to reach this size range. Other methods exist but incur other limitations, such as the need for electrically charged particles. Here we show how light scattering can be used to detect and measure the size and location of single viruses and protein complexes forming an aerosol beam, as well as trace their path. We were able to detect individual particles down to 16 nm in diameter. The primary purpose of our instrument is to monitor the delivery of single bioparticles to the focus of an X-ray laser to image those particles, but it has the potential to study any other aerosols such as those resulting from ultrafine sea spray, with important consequences for cloud formation and climate modeling, or from combustion, responsible for most air pollution and resulting health impacts.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"155"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11993359/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143984118","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissipative realization of Kondo models. 近藤模型的耗散实现。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-05-22 DOI: 10.1038/s42005-025-02141-x
Martino Stefanini, Yi-Fan Qu, Tilman Esslinger, Sarang Gopalakrishnan, Eugene Demler, Jamir Marino
{"title":"Dissipative realization of Kondo models.","authors":"Martino Stefanini, Yi-Fan Qu, Tilman Esslinger, Sarang Gopalakrishnan, Eugene Demler, Jamir Marino","doi":"10.1038/s42005-025-02141-x","DOIUrl":"10.1038/s42005-025-02141-x","url":null,"abstract":"<p><p>The Kondo effect is a prototypical strongly correlated phenomenon, and it is usually discussed in the context of unitary dynamics. Here, we demonstrate that the Kondo effect can be induced through non-linear dissipative channels, without requiring any coherent interaction on the impurity site. Specifically, we consider a reservoir of noninteracting fermions that can hop on a few impurity sites that are subjected to strong two-body losses. In the simplest case of a single lossy site, we recover the Anderson impurity model in the regime of infinite repulsion, with a small residual dissipation as a perturbation. While the Anderson model gives rise to the Kondo effect, this residual dissipation competes with it, offering an instance of a nonlinear dissipative impurity where the interplay between coherent and incoherent dynamics emerges from the same underlying physical process. We further outline how this dissipative engineering scheme can be extended to two or more lossy sites, realizing generalizations of the Kondo model with spin 1 or higher. Our results suggest alternative implementations of Kondo models using ultracold atoms in transport experiments, where localized dissipation can be naturally introduced, and the Kondo effect observed through conductance measurements.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"212"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12098120/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144141605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diverse dynamics in interacting vortices systems through tunable conservative and non-conservative coupling strengths. 通过可调的保守和非保守耦合强度,相互作用的涡旋系统的多种动力学。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-03-01 DOI: 10.1038/s42005-025-02006-3
Alexandre Abbass Hamadeh, Abbas Koujok, Davi R Rodrigues, Alejandro Riveros, Vitaliy Lomakin, Giovanni Finocchio, Grégoire De Loubens, Olivier Klein, Philipp Pirro
{"title":"Diverse dynamics in interacting vortices systems through tunable conservative and non-conservative coupling strengths.","authors":"Alexandre Abbass Hamadeh, Abbas Koujok, Davi R Rodrigues, Alejandro Riveros, Vitaliy Lomakin, Giovanni Finocchio, Grégoire De Loubens, Olivier Klein, Philipp Pirro","doi":"10.1038/s42005-025-02006-3","DOIUrl":"10.1038/s42005-025-02006-3","url":null,"abstract":"<p><p>Magnetic vortices are highly tunable, nonlinear systems with ideal properties for being applied in spin wave emission, data storage, and neuromorphic computing. However, their technological application is impaired by a limited understanding of non-conservative forces, that results in the open challenge of attaining precise control over vortex dynamics in coupled vortex systems. Here, we present an analytical model for the gyrotropic dynamics of coupled magnetic vortices within nano-pillar structures, revealing how conservative and non-conservative forces dictate their complex behavior. Validated by micromagnetic simulations, our model accurately predicts dynamic states, controllable through external current and magnetic field adjustments. The experimental verification in a fabricated nano-pillar device aligns with our predictions, and it showcases the system's adaptability in dynamical coupling. The unique dynamical states, combined with the system's tunability and inherent memory, make it an exemplary foundation for reservoir computing. This positions our discovery at the forefront of utilizing magnetic vortex dynamics for innovative computing solutions, marking a leap towards efficient data processing technologies.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"85"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872732/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143556085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial quantum-interference landscapes of multi-site-controlled quantum dots coupled to extended photonic cavity modes. 多点控制量子点耦合到扩展光子腔模式的空间量子干涉景观。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-04-11 DOI: 10.1038/s42005-025-02051-y
Jiahui Huang, Alessio Miranda, Wei Liu, Xiang Cheng, Benjamin Dwir, Alok Rudra, Kai-Chi Chang, Eli Kapon, Chee Wei Wong
{"title":"Spatial quantum-interference landscapes of multi-site-controlled quantum dots coupled to extended photonic cavity modes.","authors":"Jiahui Huang, Alessio Miranda, Wei Liu, Xiang Cheng, Benjamin Dwir, Alok Rudra, Kai-Chi Chang, Eli Kapon, Chee Wei Wong","doi":"10.1038/s42005-025-02051-y","DOIUrl":"https://doi.org/10.1038/s42005-025-02051-y","url":null,"abstract":"<p><p>A compact platform to integrate emitters in a cavity-like support is to embed quantum dots (QDs) in a photonic crystal (PhC) structure, making them promising candidates for integrated quantum photonic circuits. The emission properties of QDs can be modified by tailored photonic structures, relying on the Purcell effect or strong light-matter interactions. However, the effects of photonic states on spatial features of exciton emissions in these systems are rarely explored. Such effect is difficult to access due to random positions of self-assembled QDs in PhC structures, and the fact that quantum well excitons' wavefunctions resemble photonic states in a conventional distributed Bragg reflector cavity system. In this work, we instead observe a spatial signature of exciton emission using site-controlled QDs embedded in PhC cavities. In particular, we observe the detuning-dependent spatial repulsion of the QD exciton emissions by polarized imaging of the micro-photoluminescence, dependent on the controlled QD's position in a spatially extended photonic pattern. The observed effect arises due to the quantum interference between QD decay channel in a spatially-extended cavity mode. Our findings suggest that integration of site-controlled QDs in tailored photonic structures can enable spatially distributed single-photon sources and photon switches.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"152"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11991910/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143966574","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesoscopic insights into effects of electric field on pool boiling for leaky dielectric fluids. 电场对漏电介质池沸腾影响的介观研究。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-04-30 DOI: 10.1038/s42005-025-02102-4
Geng Wang, Junyu Yang, Timan Lei, Linlin Fei, Xiao Zhao, Jianfu Zhao, Kai Li, Kai H Luo
{"title":"Mesoscopic insights into effects of electric field on pool boiling for leaky dielectric fluids.","authors":"Geng Wang, Junyu Yang, Timan Lei, Linlin Fei, Xiao Zhao, Jianfu Zhao, Kai Li, Kai H Luo","doi":"10.1038/s42005-025-02102-4","DOIUrl":"https://doi.org/10.1038/s42005-025-02102-4","url":null,"abstract":"<p><p>The electric field is known as an effective approach to improving pool boiling. However, there has been limited research on electric field-enhanced boiling of leaky dielectric fluids and the associated bubble dynamics. In this work, we employ a mesoscopic multiphase lattice Boltzmann method to perform large-scale three-dimensional simulations of electric field-enhanced pool boiling in leaky dielectric fluids. Our findings confirm that, compared to conventional pool boiling, electric field-enhanced pool boiling significantly increases heat transfer efficiency in the transition boiling regime. Furthermore, we propose a theoretical model based on the hydrodynamic theory that accurately predicts the heat flux across a wide range of operating parameters. Finally, we reveal size effects of the electric force on nucleation sites and rising bubbles, explaining the contrasting phenomena of bubble suppression and enhanced bubble detachment observed in electric field-enhanced boiling. The results of this study provide theoretical insight for optimizing phase‑change heat transfer efficiency.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"188"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12043509/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143954623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlling colloidal flow through a microfluidic Y-junction. 通过微流体y型结控制胶体流动。
IF 5.4 1区 物理与天体物理
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-04-16 DOI: 10.1038/s42005-025-02094-1
Alexander P Antonov, Matthew Terkel, Fabian Jan Schwarzendahl, Carolina Rodríguez-Gallo, Pietro Tierno, Hartmut Löwen
{"title":"Controlling colloidal flow through a microfluidic Y-junction.","authors":"Alexander P Antonov, Matthew Terkel, Fabian Jan Schwarzendahl, Carolina Rodríguez-Gallo, Pietro Tierno, Hartmut Löwen","doi":"10.1038/s42005-025-02094-1","DOIUrl":"https://doi.org/10.1038/s42005-025-02094-1","url":null,"abstract":"<p><p>Microscopic particles flowing through narrow channels may accumulate near bifurcation points provoking flow reduction, clogging and ultimately chip breakage in a microfluidic device. Here we show that the full flow behavior of colloidal particles through a microfluidic Y-junction can be controlled by tuning the pair interactions and the degree of confinement. By combining experiments with numerical simulations, we investigate the dynamic states emerging when magnetizable colloids flow through a symmetric Y-junction such that a single particle can pass through both gates with the same probability. We show that clogging, induced by the inevitable presence of a stagnation point, can be avoided by repulsive interactions. Moreover we tune the pair interactions to steer branching into the two channels: attractive particles are flowing through the same gate, while repulsive colloids alternate between the two gates. Even details of the particle assembly such as buckling at the exit gate are tunable by the interactions and the channel geometry.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"165"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12003161/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143987046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信