光辅助极化实现的单片氮化硅电光调制器。

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-04-08 DOI:10.1038/s42005-025-02071-8
Christian Lafforgue, Boris Zabelich, Camille-Sophie Brès
{"title":"光辅助极化实现的单片氮化硅电光调制器。","authors":"Christian Lafforgue, Boris Zabelich, Camille-Sophie Brès","doi":"10.1038/s42005-025-02071-8","DOIUrl":null,"url":null,"abstract":"<p><p>Electro-optic (EO) modulation is a key functionality to have on-chip. However, achieving a notable linear EO effect in stoichiometric silicon nitride has been a persistent challenge due to the material's intrinsic properties. Recent advancements revealed that the displacement of thermally excited charge carriers under a high electric field induces a second-order nonlinearity in silicon nitride, thus enabling the linear EO effect in this platform regardless of the material's inversion symmetry. In this work, we introduce optically-assisted poling of a silicon nitride microring resonator, removing the need for high-temperature processing of the device. The optical stimulation of charges avoids the technical constraints due to elevated temperature. By optimizing the poling process, we experimentally obtain a long-term effective second-order nonlinearity <math> <msubsup><mrow><mi>χ</mi></mrow> <mrow><mi>eff</mi></mrow> <mrow><mrow><mo>(</mo> <mrow><mn>2</mn></mrow> <mo>)</mo></mrow> </mrow> </msubsup> </math> of 1.218 pm/V. Additionally, we measure the high-speed EO response of the modulator, showing a bandwidth of 4 GHz, only limited by the quality factor of the microring resonator. This work goes towards the implementation of monolithic, compact silicon nitride EO modulators, a necessary component for high-density integrated optical signal processing.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"142"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978502/pdf/","citationCount":"0","resultStr":"{\"title\":\"Monolithic silicon nitride electro-optic modulator enabled by optically-assisted poling.\",\"authors\":\"Christian Lafforgue, Boris Zabelich, Camille-Sophie Brès\",\"doi\":\"10.1038/s42005-025-02071-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electro-optic (EO) modulation is a key functionality to have on-chip. However, achieving a notable linear EO effect in stoichiometric silicon nitride has been a persistent challenge due to the material's intrinsic properties. Recent advancements revealed that the displacement of thermally excited charge carriers under a high electric field induces a second-order nonlinearity in silicon nitride, thus enabling the linear EO effect in this platform regardless of the material's inversion symmetry. In this work, we introduce optically-assisted poling of a silicon nitride microring resonator, removing the need for high-temperature processing of the device. The optical stimulation of charges avoids the technical constraints due to elevated temperature. By optimizing the poling process, we experimentally obtain a long-term effective second-order nonlinearity <math> <msubsup><mrow><mi>χ</mi></mrow> <mrow><mi>eff</mi></mrow> <mrow><mrow><mo>(</mo> <mrow><mn>2</mn></mrow> <mo>)</mo></mrow> </mrow> </msubsup> </math> of 1.218 pm/V. Additionally, we measure the high-speed EO response of the modulator, showing a bandwidth of 4 GHz, only limited by the quality factor of the microring resonator. This work goes towards the implementation of monolithic, compact silicon nitride EO modulators, a necessary component for high-density integrated optical signal processing.</p>\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\"8 1\",\"pages\":\"142\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11978502/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s42005-025-02071-8\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/8 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-02071-8","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电光(EO)调制是芯片上的一个关键功能。然而,由于材料的固有特性,在化学计量氮化硅中实现显着的线性EO效应一直是一个持续的挑战。最近的进展表明,在高电场下,热激发载流子的位移在氮化硅中引起二阶非线性,从而使该平台中的线性EO效应与材料的反演对称性无关。在这项工作中,我们介绍了氮化硅微环谐振器的光学辅助极化,消除了对器件高温加工的需要。电荷的光学刺激避免了由于温度升高而造成的技术限制。通过优化极化过程,我们实验获得了长期有效的二阶非线性χ eff(2)为1.218 pm/V。此外,我们测量了调制器的高速EO响应,显示带宽为4 GHz,仅受微环谐振器质量因素的限制。这项工作是为了实现单片紧凑的氮化硅EO调制器,这是高密度集成光信号处理的必要组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Monolithic silicon nitride electro-optic modulator enabled by optically-assisted poling.

Electro-optic (EO) modulation is a key functionality to have on-chip. However, achieving a notable linear EO effect in stoichiometric silicon nitride has been a persistent challenge due to the material's intrinsic properties. Recent advancements revealed that the displacement of thermally excited charge carriers under a high electric field induces a second-order nonlinearity in silicon nitride, thus enabling the linear EO effect in this platform regardless of the material's inversion symmetry. In this work, we introduce optically-assisted poling of a silicon nitride microring resonator, removing the need for high-temperature processing of the device. The optical stimulation of charges avoids the technical constraints due to elevated temperature. By optimizing the poling process, we experimentally obtain a long-term effective second-order nonlinearity χ eff ( 2 ) of 1.218 pm/V. Additionally, we measure the high-speed EO response of the modulator, showing a bandwidth of 4 GHz, only limited by the quality factor of the microring resonator. This work goes towards the implementation of monolithic, compact silicon nitride EO modulators, a necessary component for high-density integrated optical signal processing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信