Bangyan Huang, Zipai Wang, Xinjie Zeng, Amir H Goldan, Jinyi Qi
{"title":"Fast high-resolution lifetime image reconstruction for positron lifetime tomography.","authors":"Bangyan Huang, Zipai Wang, Xinjie Zeng, Amir H Goldan, Jinyi Qi","doi":"10.1038/s42005-025-02100-6","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the ortho-positronium formed prior to the annihilation, the lifetime of a positron is sensitive to the tissue microenvironment and can potentially provide valuable information for monitoring disease progression and treatment response. However, the lifetime of positrons before annihilation has long been overlooked in current positron emission tomography (PET). Here we develop a positron lifetime image reconstruction method called SIMPLE (Statistical IMage reconstruction of Positron Lifetime via time-wEighting) and demonstrate its performance using a real scan on a time-of-flight PET scanner. The SIMPLE method achieves high-resolution positron lifetime imaging of extended heterogeneous tissue illuminated by a <sup>22</sup>Na point source, successfully resolving the boundary between muscle and fat. It delivers spatial resolution comparable to that of conventional PET activity images while maintaining a computational cost equivalent to reconstructing two PET images. This work paves the way for clinical translation of high-resolution positron lifetime imaging.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"181"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12031669/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-02100-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the ortho-positronium formed prior to the annihilation, the lifetime of a positron is sensitive to the tissue microenvironment and can potentially provide valuable information for monitoring disease progression and treatment response. However, the lifetime of positrons before annihilation has long been overlooked in current positron emission tomography (PET). Here we develop a positron lifetime image reconstruction method called SIMPLE (Statistical IMage reconstruction of Positron Lifetime via time-wEighting) and demonstrate its performance using a real scan on a time-of-flight PET scanner. The SIMPLE method achieves high-resolution positron lifetime imaging of extended heterogeneous tissue illuminated by a 22Na point source, successfully resolving the boundary between muscle and fat. It delivers spatial resolution comparable to that of conventional PET activity images while maintaining a computational cost equivalent to reconstructing two PET images. This work paves the way for clinical translation of high-resolution positron lifetime imaging.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.