电场对漏电介质池沸腾影响的介观研究。

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-04-30 DOI:10.1038/s42005-025-02102-4
Geng Wang, Junyu Yang, Timan Lei, Linlin Fei, Xiao Zhao, Jianfu Zhao, Kai Li, Kai H Luo
{"title":"电场对漏电介质池沸腾影响的介观研究。","authors":"Geng Wang, Junyu Yang, Timan Lei, Linlin Fei, Xiao Zhao, Jianfu Zhao, Kai Li, Kai H Luo","doi":"10.1038/s42005-025-02102-4","DOIUrl":null,"url":null,"abstract":"<p><p>The electric field is known as an effective approach to improving pool boiling. However, there has been limited research on electric field-enhanced boiling of leaky dielectric fluids and the associated bubble dynamics. In this work, we employ a mesoscopic multiphase lattice Boltzmann method to perform large-scale three-dimensional simulations of electric field-enhanced pool boiling in leaky dielectric fluids. Our findings confirm that, compared to conventional pool boiling, electric field-enhanced pool boiling significantly increases heat transfer efficiency in the transition boiling regime. Furthermore, we propose a theoretical model based on the hydrodynamic theory that accurately predicts the heat flux across a wide range of operating parameters. Finally, we reveal size effects of the electric force on nucleation sites and rising bubbles, explaining the contrasting phenomena of bubble suppression and enhanced bubble detachment observed in electric field-enhanced boiling. The results of this study provide theoretical insight for optimizing phase‑change heat transfer efficiency.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"188"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12043509/pdf/","citationCount":"0","resultStr":"{\"title\":\"Mesoscopic insights into effects of electric field on pool boiling for leaky dielectric fluids.\",\"authors\":\"Geng Wang, Junyu Yang, Timan Lei, Linlin Fei, Xiao Zhao, Jianfu Zhao, Kai Li, Kai H Luo\",\"doi\":\"10.1038/s42005-025-02102-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The electric field is known as an effective approach to improving pool boiling. However, there has been limited research on electric field-enhanced boiling of leaky dielectric fluids and the associated bubble dynamics. In this work, we employ a mesoscopic multiphase lattice Boltzmann method to perform large-scale three-dimensional simulations of electric field-enhanced pool boiling in leaky dielectric fluids. Our findings confirm that, compared to conventional pool boiling, electric field-enhanced pool boiling significantly increases heat transfer efficiency in the transition boiling regime. Furthermore, we propose a theoretical model based on the hydrodynamic theory that accurately predicts the heat flux across a wide range of operating parameters. Finally, we reveal size effects of the electric force on nucleation sites and rising bubbles, explaining the contrasting phenomena of bubble suppression and enhanced bubble detachment observed in electric field-enhanced boiling. The results of this study provide theoretical insight for optimizing phase‑change heat transfer efficiency.</p>\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\"8 1\",\"pages\":\"188\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12043509/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s42005-025-02102-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/4/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-02102-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电场被认为是改善池沸腾的有效方法。然而,对漏电介质的电场增强沸腾及其气泡动力学的研究还很有限。在这项工作中,我们采用介观多相晶格玻尔兹曼方法进行了泄漏介质中电场增强池沸腾的大规模三维模拟。我们的研究结果证实,与传统的池沸腾相比,电场增强池沸腾在过渡沸腾状态下显着提高了传热效率。此外,我们提出了一个基于流体力学理论的理论模型,该模型可以准确地预测大范围工作参数下的热通量。最后,我们揭示了电作用力对成核位置和上升气泡的尺寸效应,解释了在电场增强沸腾中观察到的气泡抑制和气泡分离增强的对比现象。研究结果为优化相变换热效率提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mesoscopic insights into effects of electric field on pool boiling for leaky dielectric fluids.

The electric field is known as an effective approach to improving pool boiling. However, there has been limited research on electric field-enhanced boiling of leaky dielectric fluids and the associated bubble dynamics. In this work, we employ a mesoscopic multiphase lattice Boltzmann method to perform large-scale three-dimensional simulations of electric field-enhanced pool boiling in leaky dielectric fluids. Our findings confirm that, compared to conventional pool boiling, electric field-enhanced pool boiling significantly increases heat transfer efficiency in the transition boiling regime. Furthermore, we propose a theoretical model based on the hydrodynamic theory that accurately predicts the heat flux across a wide range of operating parameters. Finally, we reveal size effects of the electric force on nucleation sites and rising bubbles, explaining the contrasting phenomena of bubble suppression and enhanced bubble detachment observed in electric field-enhanced boiling. The results of this study provide theoretical insight for optimizing phase‑change heat transfer efficiency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信