Disentangling autoencoders and spherical harmonics for efficient shape classification in crystal growth simulations.

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-07-02 DOI:10.1038/s42005-025-02129-7
Jaehoon Cha, Steven Tendyra, Alvin J Walisinghe, Adam R Hill, Susmita Basak, Peter R Spackman, Michael W Anderson, Jeyan Thiyagalingam
{"title":"Disentangling autoencoders and spherical harmonics for efficient shape classification in crystal growth simulations.","authors":"Jaehoon Cha, Steven Tendyra, Alvin J Walisinghe, Adam R Hill, Susmita Basak, Peter R Spackman, Michael W Anderson, Jeyan Thiyagalingam","doi":"10.1038/s42005-025-02129-7","DOIUrl":null,"url":null,"abstract":"<p><p>Controlling crystal growth is a challenge across numerous industries, as the functional properties of crystalline materials are determined during formation and often depend on particle shape. Current approaches rely on expensive, time-consuming experimental studies complemented by exhaustive parameter space simulations, creating significant computational and analytical burdens. Despite machine learning advances in crystal growth for structure-property relationships, applications targeting morphological control remain underdeveloped. Here, we demonstrate how disentangling autoencoders combined with particle aspect ratio and spherical harmonics descriptors can enhance simulation workflows for crystal growth. This approach reveals continuous transformation pathways between different crystal morphologies whilst preserving underlying crystallographic principles. Our method significantly reduces data analytics burdens, shortens design study timelines, and deepens understanding of crystal shape control. This framework enables more efficient exploration of possible crystal morphologies, facilitating the targeted design of crystalline materials with specific functional properties.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"272"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12221979/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-02129-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Controlling crystal growth is a challenge across numerous industries, as the functional properties of crystalline materials are determined during formation and often depend on particle shape. Current approaches rely on expensive, time-consuming experimental studies complemented by exhaustive parameter space simulations, creating significant computational and analytical burdens. Despite machine learning advances in crystal growth for structure-property relationships, applications targeting morphological control remain underdeveloped. Here, we demonstrate how disentangling autoencoders combined with particle aspect ratio and spherical harmonics descriptors can enhance simulation workflows for crystal growth. This approach reveals continuous transformation pathways between different crystal morphologies whilst preserving underlying crystallographic principles. Our method significantly reduces data analytics burdens, shortens design study timelines, and deepens understanding of crystal shape control. This framework enables more efficient exploration of possible crystal morphologies, facilitating the targeted design of crystalline materials with specific functional properties.

解缠自编码器和球面谐波在晶体生长模拟中的有效形状分类。
控制晶体生长是许多行业面临的挑战,因为晶体材料的功能特性是在形成过程中决定的,通常取决于颗粒形状。目前的方法依赖于昂贵、耗时的实验研究,辅以详尽的参数空间模拟,造成了巨大的计算和分析负担。尽管机器学习在晶体生长的结构-性质关系方面取得了进展,但针对形态控制的应用仍然不发达。在这里,我们展示了解缠自编码器如何结合粒子长宽比和球面谐波描述符来增强晶体生长的模拟工作流程。这种方法揭示了不同晶体形态之间的连续转化途径,同时保留了潜在的晶体学原理。我们的方法大大减少了数据分析的负担,缩短了设计研究的时间,加深了对晶体形状控制的理解。该框架能够更有效地探索可能的晶体形态,促进具有特定功能特性的晶体材料的针对性设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信