Elvira Bilokon, Valeriia Bilokon, Dusty R Lindberg, Lev Kaplan, Andrii Sotnikov, Denys I Bondar
{"title":"Few-fermion resonant tunneling and underbarrier trapping in asymmetric potentials.","authors":"Elvira Bilokon, Valeriia Bilokon, Dusty R Lindberg, Lev Kaplan, Andrii Sotnikov, Denys I Bondar","doi":"10.1038/s42005-025-02189-9","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding quantum tunneling in many-body systems is crucial for advancing quantum technologies and nanoscale device design. Despite extensive studies of quantum tunneling, the role of interactions in determining directional transport through asymmetric barriers in discrete quantum systems remains unclear. Here we show that noninteracting fermions exhibit symmetric tunneling probabilities regardless of barrier orientation, while inter-particle interactions break this symmetry and create pronounced asymmetric tunneling behavior. We explore the dependence of tunneling behavior on the initial spin configurations of two spin-1/2 fermions: spin-triplet states preserve tunneling symmetry, while spin-singlet states show strong asymmetry. We identify regimes where interactions mediate tunneling through under-barrier resonant trapping and enhance tunneling via many-body resonant tunneling - a phenomenon arising solely from inter-particle interactions and being fundamentally different from traditional single-particle resonant tunneling. Our results may be applied to the design of nanoscale devices with tailored transport properties, such as diodes and memristors.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"259"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181076/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-02189-9","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding quantum tunneling in many-body systems is crucial for advancing quantum technologies and nanoscale device design. Despite extensive studies of quantum tunneling, the role of interactions in determining directional transport through asymmetric barriers in discrete quantum systems remains unclear. Here we show that noninteracting fermions exhibit symmetric tunneling probabilities regardless of barrier orientation, while inter-particle interactions break this symmetry and create pronounced asymmetric tunneling behavior. We explore the dependence of tunneling behavior on the initial spin configurations of two spin-1/2 fermions: spin-triplet states preserve tunneling symmetry, while spin-singlet states show strong asymmetry. We identify regimes where interactions mediate tunneling through under-barrier resonant trapping and enhance tunneling via many-body resonant tunneling - a phenomenon arising solely from inter-particle interactions and being fundamentally different from traditional single-particle resonant tunneling. Our results may be applied to the design of nanoscale devices with tailored transport properties, such as diodes and memristors.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.