An analytical model of "Electron-Only" magnetic reconnection rates.

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Communications Physics Pub Date : 2025-01-01 Epub Date: 2025-04-01 DOI:10.1038/s42005-025-02034-z
Yi-Hsin Liu, Prayash Pyakurel, Xiaocan Li, Michael Hesse, Naoki Bessho, Kevin Genestreti, Shiva B Thapa
{"title":"An analytical model of \"Electron-Only\" magnetic reconnection rates.","authors":"Yi-Hsin Liu, Prayash Pyakurel, Xiaocan Li, Michael Hesse, Naoki Bessho, Kevin Genestreti, Shiva B Thapa","doi":"10.1038/s42005-025-02034-z","DOIUrl":null,"url":null,"abstract":"<p><p>\"Electron-only\" reconnection, which is both uncoupled from the surrounding ions and much faster than standard reconnection, is arguably ubiquitous in turbulence. One critical step to understanding the rate in this novel regime is to model the outflow speed that limits the transport of the magnetic flux, which is super ion Alfvénic but significantly lower than the electron Alfvén speed based on the asymptotic reconnecting field. Here we develop a simple model to determine this limiting speed by taking into account the multiscale nature of reconnection, the Hall-mediated electron outflow speed, and the pressure buildup within the small system. The predicted scalings of rates and various key quantities compare well with fully kinetic simulations and can be useful for interpreting the observations of NASA's Magnetospheric-Multiscale (MMS) mission and other ongoing missions.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"128"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961362/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-02034-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

"Electron-only" reconnection, which is both uncoupled from the surrounding ions and much faster than standard reconnection, is arguably ubiquitous in turbulence. One critical step to understanding the rate in this novel regime is to model the outflow speed that limits the transport of the magnetic flux, which is super ion Alfvénic but significantly lower than the electron Alfvén speed based on the asymptotic reconnecting field. Here we develop a simple model to determine this limiting speed by taking into account the multiscale nature of reconnection, the Hall-mediated electron outflow speed, and the pressure buildup within the small system. The predicted scalings of rates and various key quantities compare well with fully kinetic simulations and can be useful for interpreting the observations of NASA's Magnetospheric-Multiscale (MMS) mission and other ongoing missions.

“纯电子”磁重联率的解析模型。
可以说,"纯电子 "重联在湍流中无处不在,它既与周围的离子不耦合,速度又比标准重联快很多。要了解这种新型机制的速率,关键的一步是模拟限制磁通传输的流出速度,它是超离子阿尔弗韦尼速度,但明显低于基于渐近重连接场的电子阿尔弗韦尼速度。在这里,我们建立了一个简单的模型,通过考虑重连接的多尺度性质、霍尔介导的电子外流速度以及小系统内的压力积聚来确定这一极限速度。所预测的速度和各种关键量的标度与全动力学模拟的结果相比较,可以很好地解释美国宇航局的磁层多尺度(MMS)任务和其他正在进行的任务的观测结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信