Communications PhysicsPub Date : 2025-01-01Epub Date: 2025-04-10DOI: 10.1038/s42005-025-02079-0
Egor Manuylovich
{"title":"Sparse intensity sampling for ultrafast full-field reconstruction in low-dimensional photonic systems.","authors":"Egor Manuylovich","doi":"10.1038/s42005-025-02079-0","DOIUrl":"https://doi.org/10.1038/s42005-025-02079-0","url":null,"abstract":"<p><p>Phase-sensitive measurements usually utilize interferometric techniques to retrieve the optical phase. However, when the feature space of an electromagnetic field is inherently low dimensional, most field parameters can be extracted from intensity measurements only. However, even the fastest of the previously published intensity-only methods have too high a computational complexity to be applicable at high data rates and, most importantly, require data from CCD cameras, which are generally slow. This paper shows how a few intensity measurements taken from properly placed photodetectors can be used to reconstruct the complex-valued field fully in systems with low-dimensional feature space. The presented method allows full-field characterization in few-mode fibers and does not employ a reference beam. This result is 3 orders of magnitude faster than the fastest previously published result and uses 3 orders of magnitude fewer photodetectors, allowing retrieval of mode amplitudes and phases relative to the fundamental mode using only several photodetectors. This approach enables ultrafast applications of intensity-only mode decomposition method, including pulse-to-pulse laser beam characterization, providing an essential tool for experimental exploration of the modal dynamics in spatiotemporal modelocked systems. It can also be applied to ultrafast sensing in few-mode fibers and for coherent mode division-multiplexed receivers using quadratic detectors only.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"149"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11985348/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143969803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Communications PhysicsPub Date : 2025-01-01Epub Date: 2025-08-23DOI: 10.1038/s42005-025-02250-7
Fernando E Rosas, Aaron J Gutknecht, Pedro A M Mediano, Michael Gastpar
{"title":"Characterising high-order interdependence via entropic conjugation.","authors":"Fernando E Rosas, Aaron J Gutknecht, Pedro A M Mediano, Michael Gastpar","doi":"10.1038/s42005-025-02250-7","DOIUrl":"https://doi.org/10.1038/s42005-025-02250-7","url":null,"abstract":"<p><p>High-order phenomena are pervasive across complex systems, yet their formal characterisation remains a formidable challenge. The literature provides various information-theoretic quantities that capture high-order interdependencies, but their conceptual foundations and mutual relationships are not well understood. The lack of unifying principles underpinning these quantities impedes a principled selection of appropriate analytical tools for guiding applications. Here we introduce <i>entropic conjugation</i> as a formal principle to investigate the space of possible high-order measures, which clarifies the nature of the existent high-order measures while revealing gaps in the literature. Additionally, entropic conjugation leads to notions of symmetry and skew-symmetry which serve as key indicators ensuring a balanced account of high-order interdependencies. Our analyses highlight the O-information as the unique skew-symmetric measure whose estimation cost scales linearly with system size, which spontaneously emerges as a natural axis of variation among high-order quantities in real-world and simulated systems.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"347"},"PeriodicalIF":5.8,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12374842/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144945688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Communications PhysicsPub Date : 2025-01-01Epub Date: 2025-04-01DOI: 10.1038/s42005-025-02034-z
Yi-Hsin Liu, Prayash Pyakurel, Xiaocan Li, Michael Hesse, Naoki Bessho, Kevin Genestreti, Shiva B Thapa
{"title":"An analytical model of \"Electron-Only\" magnetic reconnection rates.","authors":"Yi-Hsin Liu, Prayash Pyakurel, Xiaocan Li, Michael Hesse, Naoki Bessho, Kevin Genestreti, Shiva B Thapa","doi":"10.1038/s42005-025-02034-z","DOIUrl":"10.1038/s42005-025-02034-z","url":null,"abstract":"<p><p>\"Electron-only\" reconnection, which is both uncoupled from the surrounding ions and much faster than standard reconnection, is arguably ubiquitous in turbulence. One critical step to understanding the rate in this novel regime is to model the outflow speed that limits the transport of the magnetic flux, which is super ion Alfvénic but significantly lower than the electron Alfvén speed based on the asymptotic reconnecting field. Here we develop a simple model to determine this limiting speed by taking into account the multiscale nature of reconnection, the Hall-mediated electron outflow speed, and the pressure buildup within the small system. The predicted scalings of rates and various key quantities compare well with fully kinetic simulations and can be useful for interpreting the observations of NASA's Magnetospheric-Multiscale (MMS) mission and other ongoing missions.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"128"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11961362/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143779347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Communications PhysicsPub Date : 2025-01-01Epub Date: 2025-01-03DOI: 10.1038/s42005-024-01928-8
Adrian Montes Plaza, Janne Pakarinen, Philippos Papadakis, Rolf-Dietmar Herzberg, Rauno Julin, Tomás R Rodríguez, Andrew D Briscoe, Andrés Illana, Joonas Ojala, Panu Ruotsalainen, Eetu Uusikylä, Betool Alayed, Ahmed Alharbi, Odette Alonso-Sañudo, Kalle Auranen, Ville Bogdanoff, Jamie Chadderton, Arwin Esmaylzadeh, Christoph Fransen, Tuomas Grahn, Paul T Greenlees, Jan Jolie, Henna Joukainen, Henri Jutila, Casper-David Lakenbrink, Matti Leino, Jussi Louko, Minna Luoma, Adam McCarter, Bondili Sreenivasa Nara Singh, Panu Rahkila, Andrea Raggio, Jorge Romero, Jan Sarén, Maria-Magdalini Satrazani, Marek Stryjczyk, Conor M Sullivan, Álvaro Tolosa-Delgado, Juha Uusitalo, Franziskus von Spee, Jessica Warbinek, George L Zimba
{"title":"Direct measurement of three different deformations near the ground state in an atomic nucleus.","authors":"Adrian Montes Plaza, Janne Pakarinen, Philippos Papadakis, Rolf-Dietmar Herzberg, Rauno Julin, Tomás R Rodríguez, Andrew D Briscoe, Andrés Illana, Joonas Ojala, Panu Ruotsalainen, Eetu Uusikylä, Betool Alayed, Ahmed Alharbi, Odette Alonso-Sañudo, Kalle Auranen, Ville Bogdanoff, Jamie Chadderton, Arwin Esmaylzadeh, Christoph Fransen, Tuomas Grahn, Paul T Greenlees, Jan Jolie, Henna Joukainen, Henri Jutila, Casper-David Lakenbrink, Matti Leino, Jussi Louko, Minna Luoma, Adam McCarter, Bondili Sreenivasa Nara Singh, Panu Rahkila, Andrea Raggio, Jorge Romero, Jan Sarén, Maria-Magdalini Satrazani, Marek Stryjczyk, Conor M Sullivan, Álvaro Tolosa-Delgado, Juha Uusitalo, Franziskus von Spee, Jessica Warbinek, George L Zimba","doi":"10.1038/s42005-024-01928-8","DOIUrl":"10.1038/s42005-024-01928-8","url":null,"abstract":"<p><p>Atomic nuclei serve as prime laboratories for investigations of complex quantum phenomena, where minor nucleon rearrangements cause significant structural changes. <sup>190</sup>Pb is the heaviest known neutron-deficient Pb isotope that can exhibit three distinct shapes: prolate, oblate, and spherical, with nearly degenerate excitation energies. Here we report on the combined results from three state-of-the-art measurements to directly observe these deformations in <sup>190</sup>Pb. Contrary to earlier interpretations, we associate the collective yrast band as predominantly oblate, while the non-yrast band with higher collectivity follows characteristics of more deformed, predominantly prolate bands. Direct measurement of the <math><mi>E</mi> <mn>0</mn> <mrow><mo>(</mo> <mrow> <msubsup><mrow><mn>0</mn></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> <mo>→</mo> <msubsup><mrow><mn>0</mn></mrow> <mrow><mn>1</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> </mrow> <mo>)</mo></mrow> </math> transition and <i>γ</i>-<i>e</i> <sup>-</sup> coincidence relations allowed us to locate and firmly assign the <math> <msubsup><mrow><mn>0</mn></mrow> <mrow><mn>2</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> </math> state in the level scheme and to discover a spherical <math> <msubsup><mrow><mn>2</mn></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> </math> state at 1281(1) keV with <math><mi>B</mi> <mrow><mo>(</mo> <mrow><mi>E</mi> <mn>2</mn> <mo>;</mo> <msubsup><mrow><mn>2</mn></mrow> <mrow><mn>3</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> <mo>→</mo> <msubsup><mrow><mn>0</mn></mrow> <mrow><mn>1</mn></mrow> <mrow><mo>+</mo></mrow> </msubsup> </mrow> <mo>)</mo></mrow> <mo>=</mo> <mn>1.2</mn> <mrow><mo>(</mo> <mrow><mn>3</mn></mrow> <mo>)</mo></mrow> </math> W.u. These assignments are based purely on observed transition probabilities and monopole strength values, and do not rely on model calculations for their interpretation.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"8"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11721533/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Communications PhysicsPub Date : 2025-01-01Epub Date: 2025-04-30DOI: 10.1038/s42005-025-02084-3
Viktoria Kabel, Anne-Catherine de la Hamette, Luca Apadula, Carlo Cepollaro, Henrique Gomes, Jeremy Butterfield, Časlav Brukner
{"title":"Quantum coordinates, localisation of events, and the quantum hole argument.","authors":"Viktoria Kabel, Anne-Catherine de la Hamette, Luca Apadula, Carlo Cepollaro, Henrique Gomes, Jeremy Butterfield, Časlav Brukner","doi":"10.1038/s42005-025-02084-3","DOIUrl":"https://doi.org/10.1038/s42005-025-02084-3","url":null,"abstract":"<p><p>The study of quantum reference frames (QRFs) is motivated by the idea of taking into account the quantum properties of the reference frames used, explicitly or implicitly, in our description of physical systems. Like classical reference frames, QRFs can be used to define physical quantities relationally. Unlike their classical analogue, they relativise the notions of superposition and entanglement. Here, we explain this feature by examining how configurations or locations are identified across different branches in superposition. We show that, in the presence of symmetries, whether a system is in \"the same\" or \"different\" configurations across the branches depends on the choice of QRF. Hence, sameness and difference - and thus superposition and entanglement - lose their absolute meaning. We apply these ideas to the context of semi-classical spacetimes in superposition and use coincidences of four scalar fields to construct a comparison map between spacetime points in the different branches. This reveals that the localisation of an event is frame-dependent. We discuss the implications for indefinite causal order and the locality of interaction and conclude with a generalisation of Einstein's hole argument to the quantum context.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"185"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12040706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143977905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Communications PhysicsPub Date : 2025-01-01Epub Date: 2025-05-28DOI: 10.1038/s42005-025-02142-w
Hongjian Wang, Alexander Hadjiivanov, Emmanuel Blazquez, Christian M Schlepütz, Marco Stampanoni, Goran Lovric
{"title":"Event-guided temporally super-resolved synchrotron X-ray imaging.","authors":"Hongjian Wang, Alexander Hadjiivanov, Emmanuel Blazquez, Christian M Schlepütz, Marco Stampanoni, Goran Lovric","doi":"10.1038/s42005-025-02142-w","DOIUrl":"10.1038/s42005-025-02142-w","url":null,"abstract":"<p><p>Event cameras, as novel bio-inspired neuromorphic sensors, detect per-pixel brightness changes asynchronously. Despite their growing popularity in various applications, their potential in X-ray imaging remains largely unexplored. Synchrotron-based X-ray imaging plays a significant role in various fields of science, technology and medicine. However, time-resolved imaging still faces several challenges in achieving higher sampling rates and managing the substantial data volume. Here, we introduce an inline dual-camera setup, which leverages a high-speed CMOS camera and an event camera, aiming to temporally super-resolve the sampled frame data using sparse events. To process the data, frames and events are first aligned pixel-by-pixel using feature matching, and then used to train a deep-learning neural network. This network effectively integrates the two modalities to reconstruct the intermediate frames, achieving up to a 6-fold temporal upsampling. Our work demonstrates an event-guided temporal super-resolution approach in the X-ray imaging domain, which unlocks possibilities for future time-resolved experiments.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"222"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12119327/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144198448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Communications PhysicsPub Date : 2025-01-01Epub Date: 2025-06-20DOI: 10.1038/s42005-025-02189-9
Elvira Bilokon, Valeriia Bilokon, Dusty R Lindberg, Lev Kaplan, Andrii Sotnikov, Denys I Bondar
{"title":"Few-fermion resonant tunneling and underbarrier trapping in asymmetric potentials.","authors":"Elvira Bilokon, Valeriia Bilokon, Dusty R Lindberg, Lev Kaplan, Andrii Sotnikov, Denys I Bondar","doi":"10.1038/s42005-025-02189-9","DOIUrl":"10.1038/s42005-025-02189-9","url":null,"abstract":"<p><p>Understanding quantum tunneling in many-body systems is crucial for advancing quantum technologies and nanoscale device design. Despite extensive studies of quantum tunneling, the role of interactions in determining directional transport through asymmetric barriers in discrete quantum systems remains unclear. Here we show that noninteracting fermions exhibit symmetric tunneling probabilities regardless of barrier orientation, while inter-particle interactions break this symmetry and create pronounced asymmetric tunneling behavior. We explore the dependence of tunneling behavior on the initial spin configurations of two spin-1/2 fermions: spin-triplet states preserve tunneling symmetry, while spin-singlet states show strong asymmetry. We identify regimes where interactions mediate tunneling through under-barrier resonant trapping and enhance tunneling via many-body resonant tunneling - a phenomenon arising solely from inter-particle interactions and being fundamentally different from traditional single-particle resonant tunneling. Our results may be applied to the design of nanoscale devices with tailored transport properties, such as diodes and memristors.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"259"},"PeriodicalIF":5.4,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12181076/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144474150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ke Cheng, Meiying Hou, Wei Sun, Zhihong Qiao, Xiang Li, Chufan Lai, Jinchao Yuan, Tuo Li, Fangfu Ye, Ke Chen, Mingcheng Yang
{"title":"Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media","authors":"Ke Cheng, Meiying Hou, Wei Sun, Zhihong Qiao, Xiang Li, Chufan Lai, Jinchao Yuan, Tuo Li, Fangfu Ye, Ke Chen, Mingcheng Yang","doi":"10.1038/s42005-024-01927-9","DOIUrl":"10.1038/s42005-024-01927-9","url":null,"abstract":"Our experiments aboard the Chinese Space Station reveal a gravity-driven transition in intruder dynamics within vibrated granular media. While vibrations typically enable an intruder to ascend in a granular bed, low-gravity conditions induce it to descend under similar vibrations. Using a Hall-sensor array tracking method, we monitor the intruder’s movement throughout each vibration cycle and identified two competing mechanisms: inertia and gravity-dependent penetration. As gravity decreases, we observe a significant reduction in the scaled damping coefficient and hydrostatic pressure coefficient indicating that bed particles disperse more readily upon intruder impact, facilitating deeper penetration. Our findings highlight a critical transition from downward to upward motion of the intruder as vibration acceleration exceeds a threshold, which increases as gravity decreases. These insights into intruder dynamics in low-gravity environments have significant implications for asteroid exploration and lunar base construction, enhancing our understanding of the Brazil nut effect and the formation of planetesimal. Granular segregation may play a role in shaping the surface features of small celestial bodies such as asteroids that can be explained with the Brazil-nut effect. The authors study intruder dynamics in granular media on board the Chinese Space Station, finding that contrary to what occurs on Earth intruders tend to descend in microgravity conditions under specific vibration parameters","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01927-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"One-third magnetization plateau in Quantum Kagome antiferromagnet","authors":"Moyu Kato, Yasuo Narumi, Katsuhiro Morita, Yoshitaka Matsushita, Shuhei Fukuoka, Satoshi Yamashita, Yasuhiro Nakazawa, Migaku Oda, Hiroaki Hayashi, Kazunari Yamaura, Masayuki Hagiwara, Hiroyuki K. Yoshida","doi":"10.1038/s42005-024-01922-0","DOIUrl":"10.1038/s42005-024-01922-0","url":null,"abstract":"The emergence of nontrivial quantum states from competing interactions is a central issue in quantum magnetism. In particular, for the realization of the quantum spin-liquid state, extensive studies have been conducted on frustrated systems, such as kagome antiferromagnets and Kitaev magnets. Novel quantum states in magnetic fields have remained elusive despite the prediction of rich physics. This can be attributed to material scarcity and the difficulty of precise measurements under ultra-high magnetic fields. Here, in this study, we develop the Kapellasite-type compound InCu3(OH)6Cl3, whose exchange interactions are in appropriate energy scale to comprehensively elucidate the magnetic properties of the frustrated S = 1/2 kagome antiferromagnet. The one-third magnetization plateau was clearly observed. Moreover, the large temperature-linear term in the heat capacity was observed in the magnetic fields, indicating the excitation of gapless quasiparticles in the vicinity of the plateau. These results shed light on the critical behaviors between quantum spin-liquid and -solid in kagome antiferromagnets under high magnetic fields. A range of non-trivial quantum phenomena can emerge from frustrated magnetic systems and a prime example is a quantum spin liquid. Here, the authors conduct specific heat and magnetization measurements on the Kapellasite-type compound InCu3(OH)6Cl3 in order to characterize and define the range of the magnetization plateau in this material.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01922-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Xiao, Yongxu Peng, Linfeng Chen, Chunhui Li, Zongao Song, Xin Wang, Tao Wang, Yurun Xie, Bin Zhao, Tiangang Yang
{"title":"Two-dimensional cooling without repump laser beams through ion motional heating","authors":"Yue Xiao, Yongxu Peng, Linfeng Chen, Chunhui Li, Zongao Song, Xin Wang, Tao Wang, Yurun Xie, Bin Zhao, Tiangang Yang","doi":"10.1038/s42005-024-01920-2","DOIUrl":"10.1038/s42005-024-01920-2","url":null,"abstract":"Laser cooling typically requires one or more repump lasers to clear dark states, which complicates experimental setups, especially for systems with multiple repumping frequencies. Here, we demonstrate cooling of Be+ ions using a single laser beam, enabled by micromotion-induced one-dimensional heating. By manipulating the displacement of Be+ ions from the trap’s nodal line, we precisely control the ion micromotion velocity, eliminating the necessity of a 1.25 GHz offset repump laser while keeping ions cold in the direction perpendicular to the micromotion. We use two equivalent schemes, cooling laser detuning and ion trajectory imaging to measure the speed of the Be+ ions, with results accurately reproduced by molecular dynamics simulations based on a machine learned time-dependent electric field inside the trap. This work provides a robust method to control micromotion velocity of ions and demonstrates the potential of micromotion-assisted laser cooling to simplify setups for systems requiring multiple repumping frequencies. Reducing the number of lasers in laser cooling experiments is beneficial for simplifying systems requiring multiple repumping frequencies. This work demonstrates micromotion-assisted cooling of Be+ ions with a single laser, eliminating the need for a 1.25 GHz offset repump laser, with results rigorously validated through molecular dynamics simulations.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01920-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142890099","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}