High-energy tunable ultraviolet pulses generated by optical leaky wave in filamentation

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY
Litong Xu, Tingting Xi
{"title":"High-energy tunable ultraviolet pulses generated by optical leaky wave in filamentation","authors":"Litong Xu, Tingting Xi","doi":"10.1038/s42005-024-01910-4","DOIUrl":null,"url":null,"abstract":"Ultraviolet pulses could open up new opportunities for the study of strong-field physics and ultrafast science. However, the existing methods for generating ultraviolet pulses face difficulties in fulfilling the twofold requirements of high energy and wavelength tunability simultaneously. Here, we theoretically demonstrate the generation of high-energy and wavelength tunable ultraviolet pulses in preformed gas-plasma channels via the leaky wave emission. The output ultraviolet pulse has a tunable wavelength ranging from 91 nm to 430 nm, and an energy level up to sub-mJ. Such a high-energy tunable ultraviolet light source may provide promising opportunities for characterization of ultrafast phenomena, and also an important driving source for the generation of high-energy attosecond pulses. High-energy ultraviolet pulses serve as unique light sources for strong-field physics and ultrafast science. The authors theoretically demonstrate the generation of ultraviolet pulses with sub-mJ level energy via optical leaky wave in filamentation, where preformed gasplasma channels are used to provide adjustable dispersion conditions that enable a widely tunable wavelength range of the ultraviolet pulses.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01910-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01910-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Ultraviolet pulses could open up new opportunities for the study of strong-field physics and ultrafast science. However, the existing methods for generating ultraviolet pulses face difficulties in fulfilling the twofold requirements of high energy and wavelength tunability simultaneously. Here, we theoretically demonstrate the generation of high-energy and wavelength tunable ultraviolet pulses in preformed gas-plasma channels via the leaky wave emission. The output ultraviolet pulse has a tunable wavelength ranging from 91 nm to 430 nm, and an energy level up to sub-mJ. Such a high-energy tunable ultraviolet light source may provide promising opportunities for characterization of ultrafast phenomena, and also an important driving source for the generation of high-energy attosecond pulses. High-energy ultraviolet pulses serve as unique light sources for strong-field physics and ultrafast science. The authors theoretically demonstrate the generation of ultraviolet pulses with sub-mJ level energy via optical leaky wave in filamentation, where preformed gasplasma channels are used to provide adjustable dispersion conditions that enable a widely tunable wavelength range of the ultraviolet pulses.

Abstract Image

丝状光漏波产生的高能可调紫外线脉冲
紫外脉冲可以为强场物理和超快科学的研究开辟新的机会。然而,现有的产生紫外脉冲的方法难以同时满足高能量和波长可调性的双重要求。在这里,我们从理论上证明了通过泄漏波发射在预制的气体等离子体通道中产生高能量和波长可调的紫外线脉冲。输出的紫外线脉冲具有可调的波长范围从91 nm到430 nm,和能级高达亚mj。这种高能可调谐紫外光源为表征超快现象提供了很好的机会,也是产生高能阿秒脉冲的重要驱动源。高能紫外脉冲是强场物理和超快科学的独特光源。作者从理论上证明了通过光泄漏波在灯丝中产生亚mj能级的紫外脉冲,其中预制的气等离子体通道用于提供可调的色散条件,使紫外脉冲的波长范围可调。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信