{"title":"Quantum origin of anomalous Floquet phases in cavity-QED materials","authors":"Beatriz Pérez-González, Gloria Platero, Álvaro Gómez-León","doi":"10.1038/s42005-024-01908-y","DOIUrl":null,"url":null,"abstract":"Anomalous Floquet topological phases are unique to periodically driven systems, lacking a static analog. Inspired by Floquet Engineering with classical electromagnetic radiation, Quantum Floquet Engineering has emerged as a promising tool to tailor the properties of quantum materials using quantum light. While the latter recovers the physics of Floquet materials in its semi-classical limit, the mapping between these two scenarios remains mysterious in many aspects. In this work, we discuss the emergence of quantum anomalous topological phases in cavity-QED materials, linking the topological phase transitions in the electron-photon spectrum with those in the 0- and π-gaps of Floquet quasienergies. Our results establish the microscopic origin of an emergent discrete time-translation symmetry in the matter sector, and link isolated c-QED materials with periodically driven ones. Finally, we discuss the bulk-edge correspondence in terms of hybrid light-matter topological invariants. Non-equilibrium systems subject to periodic driving fields, known as Floquet materials, can host unique topological phases without static counterpart. This work targets the link between Floquet physics and cavity-QED systems, and unveils the emergence of quantum anomalous phases in the latter, pointing to the important entangled light-matter dynamics.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01908-y.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01908-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Anomalous Floquet topological phases are unique to periodically driven systems, lacking a static analog. Inspired by Floquet Engineering with classical electromagnetic radiation, Quantum Floquet Engineering has emerged as a promising tool to tailor the properties of quantum materials using quantum light. While the latter recovers the physics of Floquet materials in its semi-classical limit, the mapping between these two scenarios remains mysterious in many aspects. In this work, we discuss the emergence of quantum anomalous topological phases in cavity-QED materials, linking the topological phase transitions in the electron-photon spectrum with those in the 0- and π-gaps of Floquet quasienergies. Our results establish the microscopic origin of an emergent discrete time-translation symmetry in the matter sector, and link isolated c-QED materials with periodically driven ones. Finally, we discuss the bulk-edge correspondence in terms of hybrid light-matter topological invariants. Non-equilibrium systems subject to periodic driving fields, known as Floquet materials, can host unique topological phases without static counterpart. This work targets the link between Floquet physics and cavity-QED systems, and unveils the emergence of quantum anomalous phases in the latter, pointing to the important entangled light-matter dynamics.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.