{"title":"Central limit theorem for components in meandric systems through high moments","authors":"Svante Janson, Paul Thévenin","doi":"10.1017/s0963548324000117","DOIUrl":"https://doi.org/10.1017/s0963548324000117","url":null,"abstract":"<p>We investigate here the behaviour of a large typical meandric system, proving a central limit theorem for the number of components of a given shape. Our main tool is a theorem of Gao and Wormald that allows us to deduce a central limit theorem from the asymptotics of large moments of our quantities of interest.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Behaviour of the minimum degree throughout the -process","authors":"Jakob Hofstad","doi":"10.1017/s0963548324000105","DOIUrl":"https://doi.org/10.1017/s0963548324000105","url":null,"abstract":"The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline2.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-process generates a graph at random by starting with an empty graph with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline3.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices, then adding edges one at a time uniformly at random among all pairs of vertices which have degrees at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline4.png\" /> <jats:tex-math> $d-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and are not mutually joined. We show that, in the evolution of a random graph with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline5.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices under the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline6.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-process with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline7.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> fixed, with high probability, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline8.png\" /> <jats:tex-math> $j in {0,1,dots,d-2}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the minimum degree jumps from <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline9.png\" /> <jats:tex-math> $j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline10.png\" /> <jats:tex-math> $j+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> when the number of steps left is on the order of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline11.png\" /> <jats:tex-math> $ln (n)^{d-j-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This answer","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140637454","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Clemens Heuberger, Sarah J. Selkirk, Stephan Wagner
{"title":"The distribution of the maximum protection number in simply generated trees","authors":"Clemens Heuberger, Sarah J. Selkirk, Stephan Wagner","doi":"10.1017/s0963548324000099","DOIUrl":"https://doi.org/10.1017/s0963548324000099","url":null,"abstract":"The protection number of a vertex <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000099_inline1.png\" /> <jats:tex-math> $v$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in a tree is the length of the shortest path from <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000099_inline2.png\" /> <jats:tex-math> $v$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to any leaf contained in the maximal subtree where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000099_inline3.png\" /> <jats:tex-math> $v$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the root. In this paper, we determine the distribution of the maximum protection number of a vertex in simply generated trees, thereby refining a recent result of Devroye, Goh, and Zhao. Two different cases can be observed: if the given family of trees allows vertices of outdegree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000099_inline4.png\" /> <jats:tex-math> $1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the maximum protection number is on average logarithmic in the tree size, with a discrete double-exponential limiting distribution. If no such vertices are allowed, the maximum protection number is doubly logarithmic in the tree size and concentrated on at most two values. These results are obtained by studying the singular behaviour of the generating functions of trees with bounded protection number. While a general distributional result by Prodinger and Wagner can be used in the first case, we prove a variant of that result in the second case.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140603332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Charlie Carlson, Ewan Davies, Nicolas Fraiman, Alexandra Kolla, Aditya Potukuchi, Corrine Yap
{"title":"Algorithms for the ferromagnetic Potts model on expanders","authors":"Charlie Carlson, Ewan Davies, Nicolas Fraiman, Alexandra Kolla, Aditya Potukuchi, Corrine Yap","doi":"10.1017/s0963548324000087","DOIUrl":"https://doi.org/10.1017/s0963548324000087","url":null,"abstract":"We give algorithms for approximating the partition function of the ferromagnetic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline1.png\" /> <jats:tex-math> $q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-color Potts model on graphs of maximum degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline2.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our primary contribution is a fully polynomial-time approximation scheme for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline3.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular graphs with an expansion condition at low temperatures (that is, bounded away from the order-disorder threshold). The expansion condition is much weaker than in previous works; for example, the expansion exhibited by the hypercube suffices. The main improvements come from a significantly sharper analysis of standard polymer models; we use extremal graph theory and applications of Karger’s algorithm to count cuts that may be of independent interest. It is #BIS-hard to approximate the partition function at low temperatures on bounded-degree graphs, so our algorithm can be seen as evidence that hard instances of #BIS are rare. We also obtain efficient algorithms in the Gibbs uniqueness region for bounded-degree graphs. While our high-temperature proof follows more standard polymer model analysis, our result holds in the largest-known range of parameters <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline4.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline5.png\" /> <jats:tex-math> $q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140575654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antidirected subgraphs of oriented graphs","authors":"Maya Stein, Camila Zárate-Guerén","doi":"10.1017/s0963548324000038","DOIUrl":"https://doi.org/10.1017/s0963548324000038","url":null,"abstract":"<p>We show that for every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$eta gt 0$</span></span></img></span></span> every sufficiently large <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>-vertex oriented graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$D$</span></span></img></span></span> of minimum semidegree exceeding <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$(1+eta )frac k2$</span></span></img></span></span> contains every balanced antidirected tree with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> edges and bounded maximum degree, if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$kge eta n$</span></span></img></span></span>. In particular, this asymptotically confirms a conjecture of the first author for long antidirected paths and dense digraphs.</p><p>Further, we show that in the same setting, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$D$</span></span></img></span></span> contains every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-edge antidirected subdivision of a sufficiently small complete graph, if the paths of the subdivision that have length <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline9.png\"><spa","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140044776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A class of graphs of zero Turán density in a hypercube","authors":"Maria Axenovich","doi":"10.1017/s0963548324000063","DOIUrl":"https://doi.org/10.1017/s0963548324000063","url":null,"abstract":"<p>For a graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> and a hypercube <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$Q_n$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$textrm{ex}(Q_n, H)$</span></span></img></span></span> is the largest number of edges in an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span>-free subgraph of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$Q_n$</span></span></img></span></span>. If <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$lim _{n rightarrow infty } textrm{ex}(Q_n, H)/|E(Q_n)| gt 0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> is said to have a positive Turán density in a hypercube or simply a positive Turán density; otherwise, it has zero Turán density. Determining <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$textrm{ex}(Q_n, H)$</span></span></img></span></span> and even identifying whether <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> has a positive or zero Turán density remains a widely open question for general <span><span><im","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140037464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sharp bounds for a discrete John’s theorem","authors":"Peter van Hintum, Peter Keevash","doi":"10.1017/s0963548324000051","DOIUrl":"https://doi.org/10.1017/s0963548324000051","url":null,"abstract":"<p>Tao and Vu showed that every centrally symmetric convex progression <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$Csubset mathbb{Z}^d$</span></span></img></span></span> is contained in a generalized arithmetic progression of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d^2)} # C$</span></span></img></span></span>. Berg and Henk improved the size bound to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(dlog d)} # C$</span></span></img></span></span>. We obtain the bound <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d)} # C$</span></span></img></span></span>, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140037462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Large monochromatic components in expansive hypergraphs","authors":"Deepak Bal, Louis DeBiasio","doi":"10.1017/s096354832400004x","DOIUrl":"https://doi.org/10.1017/s096354832400004x","url":null,"abstract":"<p>A result of Gyárfás [12] exactly determines the size of a largest monochromatic component in an arbitrary <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$r$</span></span></img></span></span>-colouring of the complete <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$K_n^k$</span></span></img></span></span> when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$kgeq 2$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$kin {r-1,r}$</span></span></img></span></span>. We prove a result which says that if one replaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$K_n^k$</span></span></img></span></span> in Gyárfás’ theorem by any ‘expansive’ <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-uniform hypergraph on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span> vertices (that is, a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambri","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140037108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}