{"title":"Small subsets with large sumset: Beyond the Cauchy–Davenport bound","authors":"Jacob Fox, Sammy Luo, Huy Tuan Pham, Yunkun Zhou","doi":"10.1017/s0963548324000014","DOIUrl":null,"url":null,"abstract":"For a subset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline1.png\" /> <jats:tex-math> $A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of an abelian group <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline2.png\" /> <jats:tex-math> $G$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, given its size <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline3.png\" /> <jats:tex-math> $|A|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, its doubling <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline4.png\" /> <jats:tex-math> $\\kappa =|A+A|/|A|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and a parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline5.png\" /> <jats:tex-math> $s$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> which is small compared to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline6.png\" /> <jats:tex-math> $|A|$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we study the size of the largest sumset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline7.png\" /> <jats:tex-math> $A+A'$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> that can be guaranteed for a subset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline8.png\" /> <jats:tex-math> $A'$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline9.png\" /> <jats:tex-math> $A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of size at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline10.png\" /> <jats:tex-math> $s$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We show that a subset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline11.png\" /> <jats:tex-math> $A'\\subseteq A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of size at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline12.png\" /> <jats:tex-math> $s$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> can be found so that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline13.png\" /> <jats:tex-math> $|A+A'| = \\Omega (\\!\\min\\! (\\kappa ^{1/3},s)|A|)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Thus, a sumset significantly larger than the Cauchy–Davenport bound can be guaranteed by a bounded size subset assuming that the doubling <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline14.png\" /> <jats:tex-math> $\\kappa$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is large. Building up on the same ideas, we resolve a conjecture of Bollobás, Leader and Tiba that for subsets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline15.png\" /> <jats:tex-math> $A,B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline16.png\" /> <jats:tex-math> $\\mathbb{F}_p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of size at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline17.png\" /> <jats:tex-math> $\\alpha p$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> for an appropriate constant <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline18.png\" /> <jats:tex-math> $\\alpha \\gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, one only needs three elements <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline19.png\" /> <jats:tex-math> $b_1,b_2,b_3\\in B$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to guarantee <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline20.png\" /> <jats:tex-math> $|A+\\{b_1,b_2,b_3\\}|\\ge |A|+|B|-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Allowing the use of larger subsets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline21.png\" /> <jats:tex-math> $A'$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that for sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline22.png\" /> <jats:tex-math> $A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> of bounded doubling, one only needs a subset <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline23.png\" /> <jats:tex-math> $A'$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline24.png\" /> <jats:tex-math> $o(|A|)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> elements to guarantee that <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000014_inline25.png\" /> <jats:tex-math> $A+A'=A+A$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We also address another conjecture and a question raised by Bollobás, Leader and Tiba on high-dimensional analogues and sets whose sumset cannot be saturated by a bounded size subset.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"78 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
For a subset $A$ of an abelian group $G$ , given its size $|A|$ , its doubling $\kappa =|A+A|/|A|$ , and a parameter $s$ which is small compared to $|A|$ , we study the size of the largest sumset $A+A'$ that can be guaranteed for a subset $A'$ of $A$ of size at most $s$ . We show that a subset $A'\subseteq A$ of size at most $s$ can be found so that $|A+A'| = \Omega (\!\min\! (\kappa ^{1/3},s)|A|)$ . Thus, a sumset significantly larger than the Cauchy–Davenport bound can be guaranteed by a bounded size subset assuming that the doubling $\kappa$ is large. Building up on the same ideas, we resolve a conjecture of Bollobás, Leader and Tiba that for subsets $A,B$ of $\mathbb{F}_p$ of size at most $\alpha p$ for an appropriate constant $\alpha \gt 0$ , one only needs three elements $b_1,b_2,b_3\in B$ to guarantee $|A+\{b_1,b_2,b_3\}|\ge |A|+|B|-1$ . Allowing the use of larger subsets $A'$ , we show that for sets $A$ of bounded doubling, one only needs a subset $A'$ with $o(|A|)$ elements to guarantee that $A+A'=A+A$ . We also address another conjecture and a question raised by Bollobás, Leader and Tiba on high-dimensional analogues and sets whose sumset cannot be saturated by a bounded size subset.