Stijn Cambie, Wouter Cames van Batenburg, Ewan Davies, Ross J. Kang
{"title":"List packing number of bounded degree graphs","authors":"Stijn Cambie, Wouter Cames van Batenburg, Ewan Davies, Ross J. Kang","doi":"10.1017/s0963548324000191","DOIUrl":"https://doi.org/10.1017/s0963548324000191","url":null,"abstract":"We investigate the list packing number of a graph, the least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline1.png\"/> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that there are always <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline2.png\"/> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> disjoint proper list-colourings whenever we have lists all of size <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline3.png\"/> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> associated to the vertices. We are curious how the behaviour of the list packing number contrasts with that of the list chromatic number, particularly in the context of bounded degree graphs. The main question we pursue is whether every graph with maximum degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline4.png\"/> <jats:tex-math> $Delta$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has list packing number at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000191_inline5.png\"/> <jats:tex-math> $Delta +1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our results highlight the subtleties of list packing and the barriers to, for example, pursuing a Brooks’-type theorem for the list packing number.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Robin Houston, Adam P. Goucher, Nathaniel Johnston
{"title":"A new formula for the determinant and bounds on its tensor and Waring ranks","authors":"Robin Houston, Adam P. Goucher, Nathaniel Johnston","doi":"10.1017/s0963548324000233","DOIUrl":"https://doi.org/10.1017/s0963548324000233","url":null,"abstract":"We present a new explicit formula for the determinant that contains superexponentially fewer terms than the usual Leibniz formula. As an immediate corollary of our formula, we show that the tensor rank of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline1.png\"/> <jats:tex-math> $n times n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> determinant tensor is no larger than the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline2.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-th Bell number, which is much smaller than the previously best-known upper bounds when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline3.png\"/> <jats:tex-math> $n geq 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Over fields of non-zero characteristic we obtain even tighter upper bounds, and we also slightly improve the known lower bounds. In particular, we show that the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline4.png\"/> <jats:tex-math> $4 times 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> determinant over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline5.png\"/> <jats:tex-math> ${mathbb{F}}_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has tensor rank exactly equal to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline6.png\"/> <jats:tex-math> $12$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our results also improve upon the best-known upper bound for the Waring rank of the determinant when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline7.png\"/> <jats:tex-math> $n geq 17$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and lead to a new family of axis-aligned polytopes that tile <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline8.png\"/> <jats:tex-math> ${mathbb{R}}^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the Ramsey numbers of daisies I","authors":"Pavel Pudlák, Vojtech Rödl, Marcelo Sales","doi":"10.1017/s0963548324000221","DOIUrl":"https://doi.org/10.1017/s0963548324000221","url":null,"abstract":"Daisies are a special type of hypergraph introduced by Bollobás, Leader and Malvenuto. An <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline1.png\"/> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-daisy determined by a pair of disjoint sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline2.png\"/> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline3.png\"/> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline4.png\"/> <jats:tex-math> $(r+|K|)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-uniform hypergraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline5.png\"/> <jats:tex-math> ${Kcup P,{:}, Pin M^{(r)}}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Bollobás, Leader and Malvenuto initiated the study of Turán type density problems for daisies. This paper deals with Ramsey numbers of daisies, which are natural generalisations of classical Ramsey numbers. We discuss upper and lower bounds for the Ramsey number of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline6.png\"/> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-daisies and also for special cases where the size of the kernel is bounded.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Counting spanning subgraphs in dense hypergraphs","authors":"Richard Montgomery, Matías Pavez-Signé","doi":"10.1017/s0963548324000178","DOIUrl":"https://doi.org/10.1017/s0963548324000178","url":null,"abstract":"We give a simple method to estimate the number of distinct copies of some classes of spanning subgraphs in hypergraphs with a high minimum degree. In particular, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline1.png\"/> <jats:tex-math> $kgeq 2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline2.png\"/> <jats:tex-math> $1leq ell leq k-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we show that every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline3.png\"/> <jats:tex-math> $k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-graph on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline4.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices with minimum codegree at least<jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" mimetype=\"image\" position=\"float\" xlink:href=\"S0963548324000178_eqnU1.png\"/> <jats:tex-math> begin{equation*} left {begin {array}{l@{quad}l} left (dfrac {1}{2}+o(1)right )n & text { if }(k-ell )mid k,[5pt] left (dfrac {1}{lceil frac {k}{k-ell }rceil (k-ell )}+o(1)right )n & text { if }(k-ell )nmid k, end {array} right . end{equation*} </jats:tex-math> </jats:alternatives> </jats:disp-formula>contains <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline5.png\"/> <jats:tex-math> $exp!(nlog n-Theta (n))$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> Hamilton <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline6.png\"/> <jats:tex-math> $ell$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-cycles as long as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline7.png\"/> <jats:tex-math> $(k-ell )mid n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. When <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000178_inline8.png\"/> <jats:tex-math> $(k-ell )mid k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, this gives a simple proof of a result of Glock, Gould, Joos, Kühn, and Osthus, while when <jats:inline-formula> <jats:al","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141188697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A generalisation of Varnavides’s theorem","authors":"Asaf Shapira","doi":"10.1017/s096354832400018x","DOIUrl":"https://doi.org/10.1017/s096354832400018x","url":null,"abstract":"<p>A linear equation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> is said to be <span>sparse</span> if there is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$cgt 0$</span></span></img></span></span> so that every subset of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$[n]$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$n^{1-c}$</span></span></img></span></span> contains a solution of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> variables is <span>abundant</span> if every subset of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$[n]$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$varepsilon n$</span></span></img></span></span> contains at least <span><span><img data-mimesubtype","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141167599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Noise sensitivity of the minimum spanning tree of the complete graph","authors":"Omer Israeli, Yuval Peled","doi":"10.1017/s0963548324000129","DOIUrl":"https://doi.org/10.1017/s0963548324000129","url":null,"abstract":"We study the noise sensitivity of the minimum spanning tree (MST) of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline1.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex complete graph when edges are assigned independent random weights. It is known that when the graph distance is rescaled by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline2.png\"/> <jats:tex-math> $n^{1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and vertices are given a uniform measure, the MST converges in distribution in the Gromov–Hausdorff–Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled independently with probability <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline3.png\"/> <jats:tex-math> $varepsilon gg n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the pair of rescaled minimum spanning trees – before and after the noise – converges in distribution to independent random spaces. Conversely, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline4.png\"/> <jats:tex-math> $varepsilon ll n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the GHP distance between the rescaled trees goes to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline5.png\"/> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in probability. This implies the noise sensitivity and stability for every property of the MST that corresponds to a continuity set of the random limit. The noise threshold of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline6.png\"/> <jats:tex-math> $n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> coincides with the critical window of the Erdős-Rényi random graphs. In fact, these results follow from an analog theorem we prove regarding the minimum spanning forest of critical random graphs.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141148786","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Rainbow Hamiltonicity in uniformly coloured perturbed digraphs","authors":"Kyriakos Katsamaktsis, Shoham Letzter, Amedeo Sgueglia","doi":"10.1017/s0963548324000130","DOIUrl":"https://doi.org/10.1017/s0963548324000130","url":null,"abstract":"We investigate the existence of a rainbow Hamilton cycle in a uniformly edge-coloured randomly perturbed digraph. We show that for every <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline1.png\"/> <jats:tex-math> $delta in (0,1)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> there exists <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline2.png\"/> <jats:tex-math> $C = C(delta ) gt 0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the following holds. Let <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline3.png\"/> <jats:tex-math> $D_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> be an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline4.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex digraph with minimum semidegree at least <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline5.png\"/> <jats:tex-math> $delta n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and suppose that each edge of the union of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline6.png\"/> <jats:tex-math> $D_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with a copy of the random digraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline7.png\"/> <jats:tex-math> $mathbf{D}(n,C/n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on the same vertex set gets a colour in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline8.png\"/> <jats:tex-math> $[n]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> independently and uniformly at random. Then, with high probability, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000130_inline9.png\"/> <jats:tex-math> $D_0 cup mathbf{D}(n,C/n)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has a rainbow directed Hamilton cycle. This improves a result of Aigner-Horev and Hefetz ((2021) <jats:italic>SIAM J. Discrete Math.</jats:italic>35(3) 1569–1577), who proved the same in the undirected setting when the edges are coloured","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Maximum chordal subgraphs of random graphs","authors":"Michael Krivelevich, Maksim Zhukovskii","doi":"10.1017/s0963548324000154","DOIUrl":"https://doi.org/10.1017/s0963548324000154","url":null,"abstract":"We find asymptotics of the maximum size of a chordal subgraph in a binomial random graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000154_inline1.png\"/> <jats:tex-math> $G(n,p)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000154_inline2.png\"/> <jats:tex-math> $p=mathrm{const}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000154_inline3.png\"/> <jats:tex-math> $p=n^{-alpha +o(1)}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140840719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Turán problems in pseudorandom graphs","authors":"Xizhi Liu, Dhruv Mubayi, David Munhá Correia","doi":"10.1017/s0963548324000142","DOIUrl":"https://doi.org/10.1017/s0963548324000142","url":null,"abstract":"Given a graph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline1.png\"/> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we consider the problem of determining the densest possible pseudorandom graph that contains no copy of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline2.png\"/> <jats:tex-math> $F$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We provide an embedding procedure that improves a general result of Conlon, Fox, and Zhao which gives an upper bound on the density. In particular, our result implies that optimally pseudorandom graphs with density greater than <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline3.png\"/> <jats:tex-math> $n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> must contain a copy of the Peterson graph, while the previous best result gives the bound <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline4.png\"/> <jats:tex-math> $n^{-1/4}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Moreover, we conjecture that the exponent <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline5.png\"/> <jats:tex-math> $1/3$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in our bound is tight. We also construct the densest known pseudorandom <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000142_inline6.png\"/> <jats:tex-math> $K_{2,3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-free graphs that are also triangle-free. Finally, we give a different proof for the densest known construction of clique-free pseudorandom graphs due to Bishnoi, Ihringer, and Pepe that they have no large clique.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140812125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}