完整图最小生成树的噪声敏感度

Omer Israeli, Yuval Peled
{"title":"完整图最小生成树的噪声敏感度","authors":"Omer Israeli, Yuval Peled","doi":"10.1017/s0963548324000129","DOIUrl":null,"url":null,"abstract":"We study the noise sensitivity of the minimum spanning tree (MST) of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline1.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex complete graph when edges are assigned independent random weights. It is known that when the graph distance is rescaled by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline2.png\"/> <jats:tex-math> $n^{1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and vertices are given a uniform measure, the MST converges in distribution in the Gromov–Hausdorff–Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled independently with probability <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline3.png\"/> <jats:tex-math> $\\varepsilon \\gg n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the pair of rescaled minimum spanning trees – before and after the noise – converges in distribution to independent random spaces. Conversely, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline4.png\"/> <jats:tex-math> $\\varepsilon \\ll n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the GHP distance between the rescaled trees goes to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline5.png\"/> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in probability. This implies the noise sensitivity and stability for every property of the MST that corresponds to a continuity set of the random limit. The noise threshold of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000129_inline6.png\"/> <jats:tex-math> $n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> coincides with the critical window of the Erdős-Rényi random graphs. In fact, these results follow from an analog theorem we prove regarding the minimum spanning forest of critical random graphs.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Noise sensitivity of the minimum spanning tree of the complete graph\",\"authors\":\"Omer Israeli, Yuval Peled\",\"doi\":\"10.1017/s0963548324000129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the noise sensitivity of the minimum spanning tree (MST) of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000129_inline1.png\\\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-vertex complete graph when edges are assigned independent random weights. It is known that when the graph distance is rescaled by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000129_inline2.png\\\"/> <jats:tex-math> $n^{1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and vertices are given a uniform measure, the MST converges in distribution in the Gromov–Hausdorff–Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled independently with probability <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000129_inline3.png\\\"/> <jats:tex-math> $\\\\varepsilon \\\\gg n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, then the pair of rescaled minimum spanning trees – before and after the noise – converges in distribution to independent random spaces. Conversely, if <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000129_inline4.png\\\"/> <jats:tex-math> $\\\\varepsilon \\\\ll n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the GHP distance between the rescaled trees goes to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000129_inline5.png\\\"/> <jats:tex-math> $0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in probability. This implies the noise sensitivity and stability for every property of the MST that corresponds to a continuity set of the random limit. The noise threshold of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000129_inline6.png\\\"/> <jats:tex-math> $n^{-1/3}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> coincides with the critical window of the Erdős-Rényi random graphs. In fact, these results follow from an analog theorem we prove regarding the minimum spanning forest of critical random graphs.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548324000129\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000129","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了当给边分配独立随机权重时,$n$顶点完整图的最小生成树(MST)的噪声敏感性。众所周知,当图距离被 $n^{1/3}$ 重标量且顶点被赋予统一度量时,最小生成树会在格罗莫夫-豪斯多夫-普罗霍罗夫(GHP)拓扑中收敛分布。我们证明,如果以 $\varepsilon \gg n^{-1/3}$ 的概率对每条边的权重进行独立重采样,那么一对重标的最小生成树--在噪声之前和之后--在分布上收敛于独立的随机空间。反之,如果 $\varepsilon \ll n^{-1/3}$,则重标的树之间的 GHP 距离在概率上变为 $0$。这意味着与随机极限的连续集相对应的 MST 的每个属性都具有噪声敏感性和稳定性。噪声阈值 $n^{-1/3}$ 与厄尔多斯-雷尼随机图的临界窗口相吻合。事实上,这些结果来自于我们证明的临界随机图最小跨度林的类似定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Noise sensitivity of the minimum spanning tree of the complete graph
We study the noise sensitivity of the minimum spanning tree (MST) of the $n$ -vertex complete graph when edges are assigned independent random weights. It is known that when the graph distance is rescaled by $n^{1/3}$ and vertices are given a uniform measure, the MST converges in distribution in the Gromov–Hausdorff–Prokhorov (GHP) topology. We prove that if the weight of each edge is resampled independently with probability $\varepsilon \gg n^{-1/3}$ , then the pair of rescaled minimum spanning trees – before and after the noise – converges in distribution to independent random spaces. Conversely, if $\varepsilon \ll n^{-1/3}$ , the GHP distance between the rescaled trees goes to $0$ in probability. This implies the noise sensitivity and stability for every property of the MST that corresponds to a continuity set of the random limit. The noise threshold of $n^{-1/3}$ coincides with the critical window of the Erdős-Rényi random graphs. In fact, these results follow from an analog theorem we prove regarding the minimum spanning forest of critical random graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信