A generalisation of Varnavides’s theorem

Asaf Shapira
{"title":"A generalisation of Varnavides’s theorem","authors":"Asaf Shapira","doi":"10.1017/s096354832400018x","DOIUrl":null,"url":null,"abstract":"<p>A linear equation <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> is said to be <span>sparse</span> if there is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$c\\gt 0$</span></span></img></span></span> so that every subset of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$[n]$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$n^{1-c}$</span></span></img></span></span> contains a solution of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$E$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> variables is <span>abundant</span> if every subset of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$[n]$</span></span></img></span></span> of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\varepsilon n$</span></span></img></span></span> contains at least <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline10.png\"/><span data-mathjax-type=\"texmath\"><span>$\\text{poly}(\\varepsilon )\\cdot n^{k-1}$</span></span></span></span> solutions of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$E$</span></span></span></span>. It is clear that every abundant <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$E$</span></span></span></span> is sparse, and Girão, Hurley, Illingworth, and Michel asked if the converse implication also holds. In this note, we show that this is the case for every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240529034645330-0286:S096354832400018X:S096354832400018X_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$E$</span></span></span></span> in four variables. We further discuss a generalisation of this problem which applies to all linear equations.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s096354832400018x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A linear equation Abstract Image$E$ is said to be sparse if there is Abstract Image$c\gt 0$ so that every subset of Abstract Image$[n]$ of size Abstract Image$n^{1-c}$ contains a solution of Abstract Image$E$ in distinct integers. The problem of characterising the sparse equations, first raised by Ruzsa in the 90s, is one of the most important open problems in additive combinatorics. We say that Abstract Image$E$ in Abstract Image$k$ variables is abundant if every subset of Abstract Image$[n]$ of size Abstract Image$\varepsilon n$ contains at least Abstract Image$\text{poly}(\varepsilon )\cdot n^{k-1}$ solutions of Abstract Image$E$. It is clear that every abundant Abstract Image$E$ is sparse, and Girão, Hurley, Illingworth, and Michel asked if the converse implication also holds. In this note, we show that this is the case for every Abstract Image$E$ in four variables. We further discuss a generalisation of this problem which applies to all linear equations.

瓦纳维德斯定理的一般化
如果存在 $c\gt 0$,使得大小为 $n^{1-c}$ 的 $[n]$ 的每个子集都包含一个不同整数的 $E$ 解,那么线性方程 $E$ 就被称为稀疏方程。稀疏方程的特征问题是鲁兹萨(Ruzsa)在上世纪 90 年代首次提出的,是加法组合论中最重要的未决问题之一。如果大小为 $\varepsilon n$ 的 $[n]$ 子集至少包含 $\text{poly}(\varepsilon )\cdot n^{k-1}$ 的解,我们就说 $k$ 变量中的 $E$ 是丰富的。显然,每一个丰富的 $E$ 都是稀疏的,吉朗、赫尔利、伊林沃斯和米歇尔询问反向蕴涵是否也成立。在本论文中,我们证明了四变量中的每一个 $E$ 都是稀疏的。我们将进一步讨论这个问题的广义,它适用于所有线性方程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信