On the Ramsey numbers of daisies II

Marcelo Sales
{"title":"On the Ramsey numbers of daisies II","authors":"Marcelo Sales","doi":"10.1017/s0963548324000208","DOIUrl":null,"url":null,"abstract":"A <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline1.png\"/> <jats:tex-math> $(k+r)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-uniform hypergraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline2.png\"/> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline3.png\"/> <jats:tex-math> $(k+m)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline4.png\"/> <jats:tex-math> $(r,m,k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-daisy if there exists a partition of the vertices <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline5.png\"/> <jats:tex-math> $V(H)=K\\cup M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline6.png\"/> <jats:tex-math> $|K|=k$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline7.png\"/> <jats:tex-math> $|M|=m$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> such that the set of edges of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline8.png\"/> <jats:tex-math> $H$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is all the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline9.png\"/> <jats:tex-math> $(k+r)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-tuples <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline10.png\"/> <jats:tex-math> $K\\cup P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline11.png\"/> <jats:tex-math> $P$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline12.png\"/> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-tuple of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline13.png\"/> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We obtain an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline14.png\"/> <jats:tex-math> $(r-2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-iterated exponential lower bound to the Ramsey number of an <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline15.png\"/> <jats:tex-math> $(r,m,k)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-daisy for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline16.png\"/> <jats:tex-math> $2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-colours. This matches the order of magnitude of the best lower bounds for the Ramsey number of a complete <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000208_inline17.png\"/> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-graph.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A $(k+r)$ -uniform hypergraph $H$ on $(k+m)$ vertices is an $(r,m,k)$ -daisy if there exists a partition of the vertices $V(H)=K\cup M$ with $|K|=k$ , $|M|=m$ such that the set of edges of $H$ is all the $(k+r)$ -tuples $K\cup P$ , where $P$ is an $r$ -tuple of $M$ . We obtain an $(r-2)$ -iterated exponential lower bound to the Ramsey number of an $(r,m,k)$ -daisy for $2$ -colours. This matches the order of magnitude of the best lower bounds for the Ramsey number of a complete $r$ -graph.
关于雏菊的拉姆齐数 II
如果存在一个顶点分割 $V(H)=K\cup M$,且 $|K|=k$ , $|M|=m$,使得 $H$ 的边集是所有 $(k+r)$ 元组 $K\cup P$,其中 $P$ 是 $M$ 的 $r$ 元组,那么在 $(k+m)$ 顶点上的 $(k+r)$ 均匀超图 $H$ 是一个 $(r,m,k)$ 菊花图。我们得到了一个 $(r-2)$ 的指数迭代下限,即 2$ 颜色的 $(r,m,k)$ 雏菊的拉姆齐数。这与完整 $r$ 图的拉姆齐数的最佳下界的数量级相吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信