A new formula for the determinant and bounds on its tensor and Waring ranks

Robin Houston, Adam P. Goucher, Nathaniel Johnston
{"title":"A new formula for the determinant and bounds on its tensor and Waring ranks","authors":"Robin Houston, Adam P. Goucher, Nathaniel Johnston","doi":"10.1017/s0963548324000233","DOIUrl":null,"url":null,"abstract":"We present a new explicit formula for the determinant that contains superexponentially fewer terms than the usual Leibniz formula. As an immediate corollary of our formula, we show that the tensor rank of the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline1.png\"/> <jats:tex-math> $n \\times n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> determinant tensor is no larger than the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline2.png\"/> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-th Bell number, which is much smaller than the previously best-known upper bounds when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline3.png\"/> <jats:tex-math> $n \\geq 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Over fields of non-zero characteristic we obtain even tighter upper bounds, and we also slightly improve the known lower bounds. In particular, we show that the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline4.png\"/> <jats:tex-math> $4 \\times 4$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> determinant over <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline5.png\"/> <jats:tex-math> ${\\mathbb{F}}_2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> has tensor rank exactly equal to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline6.png\"/> <jats:tex-math> $12$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our results also improve upon the best-known upper bound for the Waring rank of the determinant when <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline7.png\"/> <jats:tex-math> $n \\geq 17$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, and lead to a new family of axis-aligned polytopes that tile <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000233_inline8.png\"/> <jats:tex-math> ${\\mathbb{R}}^n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000233","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new explicit formula for the determinant that contains superexponentially fewer terms than the usual Leibniz formula. As an immediate corollary of our formula, we show that the tensor rank of the $n \times n$ determinant tensor is no larger than the $n$ -th Bell number, which is much smaller than the previously best-known upper bounds when $n \geq 4$ . Over fields of non-zero characteristic we obtain even tighter upper bounds, and we also slightly improve the known lower bounds. In particular, we show that the $4 \times 4$ determinant over ${\mathbb{F}}_2$ has tensor rank exactly equal to $12$ . Our results also improve upon the best-known upper bound for the Waring rank of the determinant when $n \geq 17$ , and lead to a new family of axis-aligned polytopes that tile ${\mathbb{R}}^n$ .
行列式的新公式及其张量和瓦林等级的界限
我们为行列式提出了一个新的显式公式,与通常的莱布尼兹公式相比,它包含的项数呈超指数减少。作为我们公式的直接推论,我们证明了 $n \times n$ 行列式张量的张量秩不会大于 $n$ -th Bell 数,这比之前已知的当 $n \geq 4$ 时的上限要小得多。在非零特征域上,我们得到了更严格的上界,而且还略微改进了已知的下界。特别是,我们证明了 ${mathbb{F}}_2$ 上的 $4 \times 4$ 行列式的张量秩正好等于 $12$ 。我们的结果还改进了当 $n \geq 17$ 时行列式的瓦林秩的已知上界,并引出了一个新的轴对齐多面体族,它可以平铺 ${mathbb{R}}^n$ 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信