On the Ramsey numbers of daisies I

Pavel Pudlák, Vojtech Rödl, Marcelo Sales
{"title":"On the Ramsey numbers of daisies I","authors":"Pavel Pudlák, Vojtech Rödl, Marcelo Sales","doi":"10.1017/s0963548324000221","DOIUrl":null,"url":null,"abstract":"Daisies are a special type of hypergraph introduced by Bollobás, Leader and Malvenuto. An <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline1.png\"/> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-daisy determined by a pair of disjoint sets <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline2.png\"/> <jats:tex-math> $K$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline3.png\"/> <jats:tex-math> $M$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline4.png\"/> <jats:tex-math> $(r+|K|)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-uniform hypergraph <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline5.png\"/> <jats:tex-math> $\\{K\\cup P\\,{:}\\, P\\in M^{(r)}\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Bollobás, Leader and Malvenuto initiated the study of Turán type density problems for daisies. This paper deals with Ramsey numbers of daisies, which are natural generalisations of classical Ramsey numbers. We discuss upper and lower bounds for the Ramsey number of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000221_inline6.png\"/> <jats:tex-math> $r$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-daisies and also for special cases where the size of the kernel is bounded.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Daisies are a special type of hypergraph introduced by Bollobás, Leader and Malvenuto. An $r$ -daisy determined by a pair of disjoint sets $K$ and $M$ is the $(r+|K|)$ -uniform hypergraph $\{K\cup P\,{:}\, P\in M^{(r)}\}$ . Bollobás, Leader and Malvenuto initiated the study of Turán type density problems for daisies. This paper deals with Ramsey numbers of daisies, which are natural generalisations of classical Ramsey numbers. We discuss upper and lower bounds for the Ramsey number of $r$ -daisies and also for special cases where the size of the kernel is bounded.
关于拉姆齐雏菊的数量 I
雏形是波尔洛巴斯、利德和马尔维努托提出的一种特殊类型的超图。由一对不相交的集合 $K$ 和 $M$ 决定的 $r$ -雏形是 $(r+|K|)$ -均匀超图 $\{K\cup P\,{:}\, P\in M^{(r)}\}$ 。Bollobás、Leader 和 Malvenuto 发起了对菊花的 Turán 类型密度问题的研究。本文讨论的是雏菊的拉姆齐数,它是经典拉姆齐数的自然概括。我们讨论了 $r$ 雏菊的拉姆齐数的上界和下界,以及内核大小有界的特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信