Sharp bounds for a discrete John’s theorem

Peter van Hintum, Peter Keevash
{"title":"Sharp bounds for a discrete John’s theorem","authors":"Peter van Hintum, Peter Keevash","doi":"10.1017/s0963548324000051","DOIUrl":null,"url":null,"abstract":"<p>Tao and Vu showed that every centrally symmetric convex progression <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$C\\subset \\mathbb{Z}^d$</span></span></img></span></span> is contained in a generalized arithmetic progression of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d^2)} \\# C$</span></span></img></span></span>. Berg and Henk improved the size bound to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d\\log d)} \\# C$</span></span></img></span></span>. We obtain the bound <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d)} \\# C$</span></span></img></span></span>, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tao and Vu showed that every centrally symmetric convex progression Abstract Image$C\subset \mathbb{Z}^d$ is contained in a generalized arithmetic progression of size Abstract Image$d^{O(d^2)} \# C$. Berg and Henk improved the size bound to Abstract Image$d^{O(d\log d)} \# C$. We obtain the bound Abstract Image$d^{O(d)} \# C$, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.

离散约翰定理的锐界
陶和武证明了每个中心对称凸级数 $C\subset \mathbb{Z}^d$ 都包含在大小为 $d^{O(d^2)}\# C$ 的广义算术级数中。Berg 和 Henk 将大小边界改进为 $d^{O(d\log d)} \# C$。我们得到的边界为 $d^{O(d)} \# C$,它在隐含常数以内都是尖锐的,与约翰定理给出的连续环境下的边界形式相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信