{"title":"离散约翰定理的锐界","authors":"Peter van Hintum, Peter Keevash","doi":"10.1017/s0963548324000051","DOIUrl":null,"url":null,"abstract":"<p>Tao and Vu showed that every centrally symmetric convex progression <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$C\\subset \\mathbb{Z}^d$</span></span></img></span></span> is contained in a generalized arithmetic progression of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d^2)} \\# C$</span></span></img></span></span>. Berg and Henk improved the size bound to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d\\log d)} \\# C$</span></span></img></span></span>. We obtain the bound <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d)} \\# C$</span></span></img></span></span>, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp bounds for a discrete John’s theorem\",\"authors\":\"Peter van Hintum, Peter Keevash\",\"doi\":\"10.1017/s0963548324000051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tao and Vu showed that every centrally symmetric convex progression <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C\\\\subset \\\\mathbb{Z}^d$</span></span></img></span></span> is contained in a generalized arithmetic progression of size <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d^{O(d^2)} \\\\# C$</span></span></img></span></span>. Berg and Henk improved the size bound to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d^{O(d\\\\log d)} \\\\# C$</span></span></img></span></span>. We obtain the bound <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d^{O(d)} \\\\# C$</span></span></img></span></span>, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.</p>\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548324000051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tao and Vu showed that every centrally symmetric convex progression $C\subset \mathbb{Z}^d$ is contained in a generalized arithmetic progression of size $d^{O(d^2)} \# C$. Berg and Henk improved the size bound to $d^{O(d\log d)} \# C$. We obtain the bound $d^{O(d)} \# C$, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.