离散约翰定理的锐界

Peter van Hintum, Peter Keevash
{"title":"离散约翰定理的锐界","authors":"Peter van Hintum, Peter Keevash","doi":"10.1017/s0963548324000051","DOIUrl":null,"url":null,"abstract":"<p>Tao and Vu showed that every centrally symmetric convex progression <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$C\\subset \\mathbb{Z}^d$</span></span></img></span></span> is contained in a generalized arithmetic progression of size <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d^2)} \\# C$</span></span></img></span></span>. Berg and Henk improved the size bound to <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d\\log d)} \\# C$</span></span></img></span></span>. We obtain the bound <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$d^{O(d)} \\# C$</span></span></img></span></span>, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sharp bounds for a discrete John’s theorem\",\"authors\":\"Peter van Hintum, Peter Keevash\",\"doi\":\"10.1017/s0963548324000051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Tao and Vu showed that every centrally symmetric convex progression <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$C\\\\subset \\\\mathbb{Z}^d$</span></span></img></span></span> is contained in a generalized arithmetic progression of size <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d^{O(d^2)} \\\\# C$</span></span></img></span></span>. Berg and Henk improved the size bound to <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d^{O(d\\\\log d)} \\\\# C$</span></span></img></span></span>. We obtain the bound <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304121128843-0351:S0963548324000051:S0963548324000051_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d^{O(d)} \\\\# C$</span></span></img></span></span>, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.</p>\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548324000051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

陶和武证明了每个中心对称凸级数 $C\subset \mathbb{Z}^d$ 都包含在大小为 $d^{O(d^2)}\# C$ 的广义算术级数中。Berg 和 Henk 将大小边界改进为 $d^{O(d\log d)} \# C$。我们得到的边界为 $d^{O(d)} \# C$,它在隐含常数以内都是尖锐的,与约翰定理给出的连续环境下的边界形式相同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sharp bounds for a discrete John’s theorem

Tao and Vu showed that every centrally symmetric convex progression $C\subset \mathbb{Z}^d$ is contained in a generalized arithmetic progression of size $d^{O(d^2)} \# C$. Berg and Henk improved the size bound to $d^{O(d\log d)} \# C$. We obtain the bound $d^{O(d)} \# C$, which is sharp up to the implied constant and is of the same form as the bound in the continuous setting given by John’s theorem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信