在整个过程中最低限度的行为

Jakob Hofstad
{"title":"在整个过程中最低限度的行为","authors":"Jakob Hofstad","doi":"10.1017/s0963548324000105","DOIUrl":null,"url":null,"abstract":"The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline2.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-process generates a graph at random by starting with an empty graph with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline3.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices, then adding edges one at a time uniformly at random among all pairs of vertices which have degrees at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline4.png\" /> <jats:tex-math> $d-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and are not mutually joined. We show that, in the evolution of a random graph with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline5.png\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices under the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline6.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-process with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline7.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> fixed, with high probability, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline8.png\" /> <jats:tex-math> $j \\in \\{0,1,\\dots,d-2\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the minimum degree jumps from <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline9.png\" /> <jats:tex-math> $j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline10.png\" /> <jats:tex-math> $j+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> when the number of steps left is on the order of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline11.png\" /> <jats:tex-math> $\\ln (n)^{d-j-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This answers a question of Ruciński and Wormald. More specifically, we show that, when the last vertex of degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline12.png\" /> <jats:tex-math> $j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> disappears, the number of steps left divided by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline13.png\" /> <jats:tex-math> $\\ln (n)^{d-j-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> converges in distribution to the exponential random variable of mean <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline14.png\" /> <jats:tex-math> $\\frac{j!}{2(d-1)!}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>; furthermore, these <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000105_inline15.png\" /> <jats:tex-math> $d-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> distributions are independent.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behaviour of the minimum degree throughout the -process\",\"authors\":\"Jakob Hofstad\",\"doi\":\"10.1017/s0963548324000105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline2.png\\\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-process generates a graph at random by starting with an empty graph with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline3.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices, then adding edges one at a time uniformly at random among all pairs of vertices which have degrees at most <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline4.png\\\" /> <jats:tex-math> $d-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and are not mutually joined. We show that, in the evolution of a random graph with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline5.png\\\" /> <jats:tex-math> $n$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> vertices under the <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline6.png\\\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-process with <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline7.png\\\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> fixed, with high probability, for each <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline8.png\\\" /> <jats:tex-math> $j \\\\in \\\\{0,1,\\\\dots,d-2\\\\}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, the minimum degree jumps from <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline9.png\\\" /> <jats:tex-math> $j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline10.png\\\" /> <jats:tex-math> $j+1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> when the number of steps left is on the order of <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline11.png\\\" /> <jats:tex-math> $\\\\ln (n)^{d-j-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This answers a question of Ruciński and Wormald. More specifically, we show that, when the last vertex of degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline12.png\\\" /> <jats:tex-math> $j$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> disappears, the number of steps left divided by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline13.png\\\" /> <jats:tex-math> $\\\\ln (n)^{d-j-1}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> converges in distribution to the exponential random variable of mean <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline14.png\\\" /> <jats:tex-math> $\\\\frac{j!}{2(d-1)!}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>; furthermore, these <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000105_inline15.png\\\" /> <jats:tex-math> $d-1$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> distributions are independent.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548324000105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

$d$ 过程随机生成一个图,它从一个有 $n$ 顶点的空图开始,然后在所有度数最多为 $d-1$ 且互不相连的顶点对中均匀随机地一次添加一条边。我们证明,在一个有 $n$ 顶点的随机图的演化过程中,在 $d$ 固定的情况下,对于 \{0,1,\dots,d-2\}$ 中的每个 $j ,当剩余步数在 $\ln (n)^{d-j-1}$ 的数量级上时,最小度从 $j$ 跳转到 $j+1$ 的概率很高。这回答了鲁辛斯基和沃玛尔德的一个问题。更具体地说,我们证明了当最后一个度数为 $j$ 的顶点消失时,剩余步数除以 $\ln (n)^{d-j-1}$ 的分布收敛于均值为 $\frac{j!}{2(d-1)!}$ 的指数随机变量;此外,这些 $d-1$ 分布是独立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behaviour of the minimum degree throughout the -process
The $d$ -process generates a graph at random by starting with an empty graph with $n$ vertices, then adding edges one at a time uniformly at random among all pairs of vertices which have degrees at most $d-1$ and are not mutually joined. We show that, in the evolution of a random graph with $n$ vertices under the $d$ -process with $d$ fixed, with high probability, for each $j \in \{0,1,\dots,d-2\}$ , the minimum degree jumps from $j$ to $j+1$ when the number of steps left is on the order of $\ln (n)^{d-j-1}$ . This answers a question of Ruciński and Wormald. More specifically, we show that, when the last vertex of degree $j$ disappears, the number of steps left divided by $\ln (n)^{d-j-1}$ converges in distribution to the exponential random variable of mean $\frac{j!}{2(d-1)!}$ ; furthermore, these $d-1$ distributions are independent.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信