扩展器上铁磁波茨模型的算法

Charlie Carlson, Ewan Davies, Nicolas Fraiman, Alexandra Kolla, Aditya Potukuchi, Corrine Yap
{"title":"扩展器上铁磁波茨模型的算法","authors":"Charlie Carlson, Ewan Davies, Nicolas Fraiman, Alexandra Kolla, Aditya Potukuchi, Corrine Yap","doi":"10.1017/s0963548324000087","DOIUrl":null,"url":null,"abstract":"We give algorithms for approximating the partition function of the ferromagnetic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline1.png\" /> <jats:tex-math> $q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-color Potts model on graphs of maximum degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline2.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our primary contribution is a fully polynomial-time approximation scheme for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline3.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular graphs with an expansion condition at low temperatures (that is, bounded away from the order-disorder threshold). The expansion condition is much weaker than in previous works; for example, the expansion exhibited by the hypercube suffices. The main improvements come from a significantly sharper analysis of standard polymer models; we use extremal graph theory and applications of Karger’s algorithm to count cuts that may be of independent interest. It is #BIS-hard to approximate the partition function at low temperatures on bounded-degree graphs, so our algorithm can be seen as evidence that hard instances of #BIS are rare. We also obtain efficient algorithms in the Gibbs uniqueness region for bounded-degree graphs. While our high-temperature proof follows more standard polymer model analysis, our result holds in the largest-known range of parameters <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline4.png\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548324000087_inline5.png\" /> <jats:tex-math> $q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algorithms for the ferromagnetic Potts model on expanders\",\"authors\":\"Charlie Carlson, Ewan Davies, Nicolas Fraiman, Alexandra Kolla, Aditya Potukuchi, Corrine Yap\",\"doi\":\"10.1017/s0963548324000087\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give algorithms for approximating the partition function of the ferromagnetic <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000087_inline1.png\\\" /> <jats:tex-math> $q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-color Potts model on graphs of maximum degree <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000087_inline2.png\\\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. Our primary contribution is a fully polynomial-time approximation scheme for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000087_inline3.png\\\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>-regular graphs with an expansion condition at low temperatures (that is, bounded away from the order-disorder threshold). The expansion condition is much weaker than in previous works; for example, the expansion exhibited by the hypercube suffices. The main improvements come from a significantly sharper analysis of standard polymer models; we use extremal graph theory and applications of Karger’s algorithm to count cuts that may be of independent interest. It is #BIS-hard to approximate the partition function at low temperatures on bounded-degree graphs, so our algorithm can be seen as evidence that hard instances of #BIS are rare. We also obtain efficient algorithms in the Gibbs uniqueness region for bounded-degree graphs. While our high-temperature proof follows more standard polymer model analysis, our result holds in the largest-known range of parameters <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000087_inline4.png\\\" /> <jats:tex-math> $d$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0963548324000087_inline5.png\\\" /> <jats:tex-math> $q$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548324000087\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了在最大阶数为 $d$ 的图形上近似铁磁 $q$ - color Potts 模型的分割函数的算法。我们的主要贡献是针对 $d$ 不规则图的全多项式时间近似方案,该方案在低温(即远离阶差阈值)下具有扩展条件。扩展条件比以前的工作要弱得多;例如,超立方体表现出的扩展就足够了。主要的改进来自于对标准聚合物模型的更清晰分析;我们利用极值图理论和卡格算法的应用来计算可能具有独立意义的切口。在有界度图上,在低温下逼近分割函数是#BIS-困难的,因此我们的算法可以被视为#BIS-困难实例是罕见的证据。我们还获得了有界度图吉布斯唯一性区域的高效算法。虽然我们的高温证明遵循更标准的聚合物模型分析,但我们的结果在已知的最大参数 $d$ 和 $q$ 范围内成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Algorithms for the ferromagnetic Potts model on expanders
We give algorithms for approximating the partition function of the ferromagnetic $q$ -color Potts model on graphs of maximum degree $d$ . Our primary contribution is a fully polynomial-time approximation scheme for $d$ -regular graphs with an expansion condition at low temperatures (that is, bounded away from the order-disorder threshold). The expansion condition is much weaker than in previous works; for example, the expansion exhibited by the hypercube suffices. The main improvements come from a significantly sharper analysis of standard polymer models; we use extremal graph theory and applications of Karger’s algorithm to count cuts that may be of independent interest. It is #BIS-hard to approximate the partition function at low temperatures on bounded-degree graphs, so our algorithm can be seen as evidence that hard instances of #BIS are rare. We also obtain efficient algorithms in the Gibbs uniqueness region for bounded-degree graphs. While our high-temperature proof follows more standard polymer model analysis, our result holds in the largest-known range of parameters $d$ and $q$ .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信