{"title":"扩张超图中的大型单色成分","authors":"Deepak Bal, Louis DeBiasio","doi":"10.1017/s096354832400004x","DOIUrl":null,"url":null,"abstract":"<p>A result of Gyárfás [12] exactly determines the size of a largest monochromatic component in an arbitrary <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$r$</span></span></img></span></span>-colouring of the complete <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$K_n^k$</span></span></img></span></span> when <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$k\\geq 2$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$k\\in \\{r-1,r\\}$</span></span></img></span></span>. We prove a result which says that if one replaces <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$K_n^k$</span></span></img></span></span> in Gyárfás’ theorem by any ‘expansive’ <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-uniform hypergraph on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span> vertices (that is, a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$G$</span></span></img></span></span> on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span> vertices in which <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline12.png\"><span data-mathjax-type=\"texmath\"><span>$e(V_1, \\ldots, V_k)\\gt 0$</span></span></img></span></span> for all disjoint sets <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$V_1, \\ldots, V_k\\subseteq V(G)$</span></span></img></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline14.png\"><span data-mathjax-type=\"texmath\"><span>$|V_i|\\gt \\alpha$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline15.png\"><span data-mathjax-type=\"texmath\"><span>$i\\in [k]$</span></span></img></span></span>), then one gets a largest monochromatic component of essentially the same size (within a small error term depending on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline16.png\"><span data-mathjax-type=\"texmath\"><span>$r$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline17.png\"/><span data-mathjax-type=\"texmath\"><span>$\\alpha$</span></span></span></span>). As corollaries we recover a number of known results about large monochromatic components in random hypergraphs and random Steiner triple systems, often with drastically improved bounds on the error terms.</p><p>Gyárfás’ result is equivalent to the dual problem of determining the smallest possible maximum degree of an arbitrary <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline18.png\"/><span data-mathjax-type=\"texmath\"><span>$r$</span></span></span></span>-partite <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline19.png\"/><span data-mathjax-type=\"texmath\"><span>$r$</span></span></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline20.png\"/><span data-mathjax-type=\"texmath\"><span>$H$</span></span></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline21.png\"/><span data-mathjax-type=\"texmath\"><span>$n$</span></span></span></span> edges in which every set of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline22.png\"/><span data-mathjax-type=\"texmath\"><span>$k$</span></span></span></span> edges has a common intersection. In this language, our result says that if one replaces the condition that every set of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline23.png\"/><span data-mathjax-type=\"texmath\"><span>$k$</span></span></span></span> edges has a common intersection with the condition that for every collection of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline24.png\"/><span data-mathjax-type=\"texmath\"><span>$k$</span></span></span></span> disjoint sets <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline25.png\"/><span data-mathjax-type=\"texmath\"><span>$E_1, \\ldots, E_k\\subseteq E(H)$</span></span></span></span> with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline26.png\"/><span data-mathjax-type=\"texmath\"><span>$|E_i|\\gt \\alpha$</span></span></span></span>, there exists <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline27.png\"/><span data-mathjax-type=\"texmath\"><span>$(e_1, \\ldots, e_k)\\in E_1\\times \\cdots \\times E_k$</span></span></span></span> such that <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline28.png\"/><span data-mathjax-type=\"texmath\"><span>$e_1\\cap \\cdots \\cap e_k\\neq \\emptyset$</span></span></span></span>, then the smallest possible maximum degree of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline29.png\"/><span data-mathjax-type=\"texmath\"><span>$H$</span></span></span></span> is essentially the same (within a small error term depending on <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline30.png\"/><span data-mathjax-type=\"texmath\"><span>$r$</span></span></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline31.png\"/><span data-mathjax-type=\"texmath\"><span>$\\alpha$</span></span></span></span>). We prove our results in this dual setting.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large monochromatic components in expansive hypergraphs\",\"authors\":\"Deepak Bal, Louis DeBiasio\",\"doi\":\"10.1017/s096354832400004x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A result of Gyárfás [12] exactly determines the size of a largest monochromatic component in an arbitrary <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$r$</span></span></img></span></span>-colouring of the complete <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K_n^k$</span></span></img></span></span> when <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k\\\\geq 2$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k\\\\in \\\\{r-1,r\\\\}$</span></span></img></span></span>. We prove a result which says that if one replaces <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$K_n^k$</span></span></img></span></span> in Gyárfás’ theorem by any ‘expansive’ <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>-uniform hypergraph on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></img></span></span> vertices (that is, a <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></img></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$G$</span></span></img></span></span> on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline11.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></img></span></span> vertices in which <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline12.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$e(V_1, \\\\ldots, V_k)\\\\gt 0$</span></span></img></span></span> for all disjoint sets <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline13.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$V_1, \\\\ldots, V_k\\\\subseteq V(G)$</span></span></img></span></span> with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline14.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$|V_i|\\\\gt \\\\alpha$</span></span></img></span></span> for all <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline15.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$i\\\\in [k]$</span></span></img></span></span>), then one gets a largest monochromatic component of essentially the same size (within a small error term depending on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline16.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$r$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline17.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\alpha$</span></span></span></span>). As corollaries we recover a number of known results about large monochromatic components in random hypergraphs and random Steiner triple systems, often with drastically improved bounds on the error terms.</p><p>Gyárfás’ result is equivalent to the dual problem of determining the smallest possible maximum degree of an arbitrary <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline18.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$r$</span></span></span></span>-partite <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline19.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$r$</span></span></span></span>-uniform hypergraph <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline20.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></span></span> with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline21.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$n$</span></span></span></span> edges in which every set of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline22.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></span></span> edges has a common intersection. In this language, our result says that if one replaces the condition that every set of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline23.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></span></span> edges has a common intersection with the condition that for every collection of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline24.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$k$</span></span></span></span> disjoint sets <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline25.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$E_1, \\\\ldots, E_k\\\\subseteq E(H)$</span></span></span></span> with <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline26.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$|E_i|\\\\gt \\\\alpha$</span></span></span></span>, there exists <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline27.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$(e_1, \\\\ldots, e_k)\\\\in E_1\\\\times \\\\cdots \\\\times E_k$</span></span></span></span> such that <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline28.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$e_1\\\\cap \\\\cdots \\\\cap e_k\\\\neq \\\\emptyset$</span></span></span></span>, then the smallest possible maximum degree of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline29.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></span></span> is essentially the same (within a small error term depending on <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline30.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$r$</span></span></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240228163240574-0578:S096354832400004X:S096354832400004X_inline31.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\alpha$</span></span></span></span>). We prove our results in this dual setting.</p>\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s096354832400004x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s096354832400004x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Large monochromatic components in expansive hypergraphs
A result of Gyárfás [12] exactly determines the size of a largest monochromatic component in an arbitrary $r$-colouring of the complete $k$-uniform hypergraph $K_n^k$ when $k\geq 2$ and $k\in \{r-1,r\}$. We prove a result which says that if one replaces $K_n^k$ in Gyárfás’ theorem by any ‘expansive’ $k$-uniform hypergraph on $n$ vertices (that is, a $k$-uniform hypergraph $G$ on $n$ vertices in which $e(V_1, \ldots, V_k)\gt 0$ for all disjoint sets $V_1, \ldots, V_k\subseteq V(G)$ with $|V_i|\gt \alpha$ for all $i\in [k]$), then one gets a largest monochromatic component of essentially the same size (within a small error term depending on $r$ and $\alpha$). As corollaries we recover a number of known results about large monochromatic components in random hypergraphs and random Steiner triple systems, often with drastically improved bounds on the error terms.
Gyárfás’ result is equivalent to the dual problem of determining the smallest possible maximum degree of an arbitrary $r$-partite $r$-uniform hypergraph $H$ with $n$ edges in which every set of $k$ edges has a common intersection. In this language, our result says that if one replaces the condition that every set of $k$ edges has a common intersection with the condition that for every collection of $k$ disjoint sets $E_1, \ldots, E_k\subseteq E(H)$ with $|E_i|\gt \alpha$, there exists $(e_1, \ldots, e_k)\in E_1\times \cdots \times E_k$ such that $e_1\cap \cdots \cap e_k\neq \emptyset$, then the smallest possible maximum degree of $H$ is essentially the same (within a small error term depending on $r$ and $\alpha$). We prove our results in this dual setting.