超立方体中图兰密度为零的一类图形

Maria Axenovich
{"title":"超立方体中图兰密度为零的一类图形","authors":"Maria Axenovich","doi":"10.1017/s0963548324000063","DOIUrl":null,"url":null,"abstract":"<p>For a graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> and a hypercube <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$Q_n$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm{ex}(Q_n, H)$</span></span></img></span></span> is the largest number of edges in an <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span>-free subgraph of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$Q_n$</span></span></img></span></span>. If <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\lim _{n \\rightarrow \\infty } \\textrm{ex}(Q_n, H)/|E(Q_n)| \\gt 0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> is said to have a positive Turán density in a hypercube or simply a positive Turán density; otherwise, it has zero Turán density. Determining <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\textrm{ex}(Q_n, H)$</span></span></img></span></span> and even identifying whether <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span> has a positive or zero Turán density remains a widely open question for general <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$H$</span></span></img></span></span>. By relating extremal numbers in a hypercube and certain corresponding hypergraphs, Conlon found a large class of graphs, ones having so-called partite representation, that have zero Turán density. He asked whether this gives a characterisation, that is, whether a graph has zero Turán density if and only if it has partite representation. Here, we show that, as suspected by Conlon, this is not the case. We give an example of a class of graphs which have no partite representation, but on the other hand, have zero Turán density. In addition, we show that any graph whose every block has partite representation has zero Turán density in a hypercube.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A class of graphs of zero Turán density in a hypercube\",\"authors\":\"Maria Axenovich\",\"doi\":\"10.1017/s0963548324000063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For a graph <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></img></span></span> and a hypercube <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Q_n$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\textrm{ex}(Q_n, H)$</span></span></img></span></span> is the largest number of edges in an <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></img></span></span>-free subgraph of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$Q_n$</span></span></img></span></span>. If <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\lim _{n \\\\rightarrow \\\\infty } \\\\textrm{ex}(Q_n, H)/|E(Q_n)| \\\\gt 0$</span></span></img></span></span>, <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></img></span></span> is said to have a positive Turán density in a hypercube or simply a positive Turán density; otherwise, it has zero Turán density. Determining <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\textrm{ex}(Q_n, H)$</span></span></img></span></span> and even identifying whether <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></img></span></span> has a positive or zero Turán density remains a widely open question for general <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240304130031703-0806:S0963548324000063:S0963548324000063_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$H$</span></span></img></span></span>. By relating extremal numbers in a hypercube and certain corresponding hypergraphs, Conlon found a large class of graphs, ones having so-called partite representation, that have zero Turán density. He asked whether this gives a characterisation, that is, whether a graph has zero Turán density if and only if it has partite representation. Here, we show that, as suspected by Conlon, this is not the case. We give an example of a class of graphs which have no partite representation, but on the other hand, have zero Turán density. In addition, we show that any graph whose every block has partite representation has zero Turán density in a hypercube.</p>\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/s0963548324000063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

对于图 $H$ 和超立方体 $Q_n$,$\textrm{ex}(Q_n, H)$ 是 $Q_n$ 的无 $H$ 子图中最大的边数。如果 $\lim _{n \rightarrow \infty }\textrm{ex}(Q_n, H)/|E(Q_n)| \gt 0$,$H$在超立方体中具有正图兰密度或简单地说具有正图兰密度;否则,它的图兰密度为零。对于一般的 $H$ 来说,确定 $\textrm{ex}(Q_n,H)$,甚至识别 $H$ 是否具有正图兰密度或零图兰密度,仍然是一个广泛悬而未决的问题。通过将超立方体中的极值数与某些相应的超图联系起来,康伦发现了一大类图,即具有所谓的部分表示的图,它们的图兰密度为零。他问这是否给出了一个特征,即如果且仅如果一个图具有部分表示,那么它的图兰密度是否为零。在此,我们证明,正如康伦所怀疑的,情况并非如此。我们举例说明了一类没有部分表示,但另一方面图兰密度为零的图形。此外,我们还证明了在超立方体中,每个图块都有部分表示的图的图兰密度为零。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A class of graphs of zero Turán density in a hypercube

For a graph $H$ and a hypercube $Q_n$, $\textrm{ex}(Q_n, H)$ is the largest number of edges in an $H$-free subgraph of $Q_n$. If $\lim _{n \rightarrow \infty } \textrm{ex}(Q_n, H)/|E(Q_n)| \gt 0$, $H$ is said to have a positive Turán density in a hypercube or simply a positive Turán density; otherwise, it has zero Turán density. Determining $\textrm{ex}(Q_n, H)$ and even identifying whether $H$ has a positive or zero Turán density remains a widely open question for general $H$. By relating extremal numbers in a hypercube and certain corresponding hypergraphs, Conlon found a large class of graphs, ones having so-called partite representation, that have zero Turán density. He asked whether this gives a characterisation, that is, whether a graph has zero Turán density if and only if it has partite representation. Here, we show that, as suspected by Conlon, this is not the case. We give an example of a class of graphs which have no partite representation, but on the other hand, have zero Turán density. In addition, we show that any graph whose every block has partite representation has zero Turán density in a hypercube.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信