{"title":"Antidirected subgraphs of oriented graphs","authors":"Maya Stein, Camila Zárate-Guerén","doi":"10.1017/s0963548324000038","DOIUrl":null,"url":null,"abstract":"<p>We show that for every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\eta \\gt 0$</span></span></img></span></span> every sufficiently large <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$n$</span></span></img></span></span>-vertex oriented graph <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$D$</span></span></img></span></span> of minimum semidegree exceeding <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$(1+\\eta )\\frac k2$</span></span></img></span></span> contains every balanced antidirected tree with <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span> edges and bounded maximum degree, if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$k\\ge \\eta n$</span></span></img></span></span>. In particular, this asymptotically confirms a conjecture of the first author for long antidirected paths and dense digraphs.</p><p>Further, we show that in the same setting, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$D$</span></span></img></span></span> contains every <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$k$</span></span></img></span></span>-edge antidirected subdivision of a sufficiently small complete graph, if the paths of the subdivision that have length <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$1$</span></span></img></span></span> or <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline10.png\"/><span data-mathjax-type=\"texmath\"><span>$2$</span></span></span></span> span a forest. As a special case, we can find all antidirected cycles of length at most <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$k$</span></span></span></span>.</p><p>Finally, we address a conjecture of Addario-Berry, Havet, Linhares Sales, Reed, and Thomassé for antidirected trees in digraphs. We show that this conjecture is asymptotically true in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$n$</span></span></span></span>-vertex oriented graphs for all balanced antidirected trees of bounded maximum degree and of size linear in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240305163448329-0023:S0963548324000038:S0963548324000038_inline13.png\"/><span data-mathjax-type=\"texmath\"><span>$n$</span></span></span></span>.</p>","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/s0963548324000038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We show that for every $\eta \gt 0$ every sufficiently large $n$-vertex oriented graph $D$ of minimum semidegree exceeding $(1+\eta )\frac k2$ contains every balanced antidirected tree with $k$ edges and bounded maximum degree, if $k\ge \eta n$. In particular, this asymptotically confirms a conjecture of the first author for long antidirected paths and dense digraphs.
Further, we show that in the same setting, $D$ contains every $k$-edge antidirected subdivision of a sufficiently small complete graph, if the paths of the subdivision that have length $1$ or $2$ span a forest. As a special case, we can find all antidirected cycles of length at most $k$.
Finally, we address a conjecture of Addario-Berry, Havet, Linhares Sales, Reed, and Thomassé for antidirected trees in digraphs. We show that this conjecture is asymptotically true in $n$-vertex oriented graphs for all balanced antidirected trees of bounded maximum degree and of size linear in $n$.