Bingtong Yan , Minmin Lin , Yang Liu , Jiawei Li , Linjing Peng , Yifei Yao , Guangheng Li , Chao Liu
{"title":"Biomechanics of horizontal meniscus tear and healing during knee flexion: Finite element analysis","authors":"Bingtong Yan , Minmin Lin , Yang Liu , Jiawei Li , Linjing Peng , Yifei Yao , Guangheng Li , Chao Liu","doi":"10.1016/j.mbm.2025.100128","DOIUrl":"10.1016/j.mbm.2025.100128","url":null,"abstract":"<div><div>Meniscus horizontal tear is a common injury that mostly occurs in middle-aged and elderly people, and the effect of repair surgery directly affects the functional recovery of the knee joint and prevention of degenerative joint diseases. However, the stress concentration in a horizontal tear is not well understood. The primary objective of this study was to examine the reparative mechanisms involved in addressing horizontal tears of the meniscus and to elucidate the alterations in mechanical behavior throughout the subsequent postoperative healing stages. Based on clinical MRI scan data of normal human knee joint, an accurate three-dimensional finite element model of the knee joint was established to simulate the meniscus at different states: including complete, horizontal torn, repaired and at different degrees of healing. An animal model was established to conduct in vitro loading experiments to assist in validating the model. Static standing simulation revealed the phenomenon of stress concentration in the area of horizontal tears. Knee flexion simulations identified the risk of tear propagation at the endpoints of the horizontal tear. Following suture repair and progressive healing, stress concentration was observed at the site of sutures, while the stress levels decreased at the endpoints of the horizontal tear. As healing progressed, the mechanical function of the meniscus gradually recovered. During progressive healing, the changing trends can provide a reference for patients' postoperative recovery activities. This finding has important implications for guiding clinical treatment strategies and rehabilitation plans for meniscal tears.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 2","pages":"Article 100128"},"PeriodicalIF":0.0,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143680447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shaotian Fu , Yahong Lu , Wenkun Sun , Wugui Chen , Chengshou Lin , An Qin
{"title":"Swimming induces bone loss via regulating mechanical sensing pathways in bone marrow","authors":"Shaotian Fu , Yahong Lu , Wenkun Sun , Wugui Chen , Chengshou Lin , An Qin","doi":"10.1016/j.mbm.2025.100125","DOIUrl":"10.1016/j.mbm.2025.100125","url":null,"abstract":"<div><div>Bone is an organ capable of perceiving external mechanical stress in real time and responding dynamically via mechanosensing proteins such as Piezo1 and YAP/TAZ. Upon sensing the mechano-signals, cells within the bone matrix collaborate to coordinate bone formation and resorption, while bone marrow cells are also stimulated and mobilized. High-load exercise stimulates osteoblast differentiation and bone formation. However, the mechanism through which the low-load exercises affect bone homeostasis is still unclear. In this work, we established a long-term swimming training model to unload the mechanical stress in mice. Throughout the training model, we observed a significant loss in trabecular bone mass, as evidenced by microCT scanning and histological staining. Single-cell sequencing of the tibial bone marrow tissue revealed a significant increase in the percentage of bone marrow neutrophils, along with alterations in Integrins and the ERK1/2 signaling pathway. Notably, the changes in both Integrins and the ERK1/2 signaling pathway in macrophages were more pronounced than in other cell types, which suggests a mechanical adaptive response in these cells. Moreover, the involvement of Integrins is also critical for the crosstalk between monocyte precusors and macrophages during swimming. Together, this study provides a resource of the alterations of bone marrow cell gene expression profile after swimming and highlights the importance of Integrins and the ERK1/2 signaling pathway in the bone marrow microenvironment after swimming.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 2","pages":"Article 100125"},"PeriodicalIF":0.0,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143636634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiangya Dou , Pengyu Fu , Yuting Zhang , Yiwen Zhang , Kaiting Ning , Baoqiang Yang , Xuezhou Yang , Yinbo Niu , Dong-En Wang , Huiyun Xu
{"title":"Gut microbiota-derived butyrate enhances exercise-induced bone mineral density in humans","authors":"Xiangya Dou , Pengyu Fu , Yuting Zhang , Yiwen Zhang , Kaiting Ning , Baoqiang Yang , Xuezhou Yang , Yinbo Niu , Dong-En Wang , Huiyun Xu","doi":"10.1016/j.mbm.2025.100124","DOIUrl":"10.1016/j.mbm.2025.100124","url":null,"abstract":"<div><div>Bone Mineral Density (BMD) is one of the primary markers of bone health. Exercise provides constant mechanical stress to bone, which in turn increases BMD. Gut-bone axis is considered to play an important role in the regulation of exercise on bone. Also, the metabolites of gut microbiota (GM), especially short-chain fatty acids (SCFAs), are thought to be involved in the progress. In this study, by analyzing serum and GM from humans with low and high BMD, we found that exercise indeed enhanced BMD, and butyrate secreted from GM was involved in the regulation.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 2","pages":"Article 100124"},"PeriodicalIF":0.0,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143619478","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Tropomodulin1 regulates the biomechanical changes in macrophages induced by matrix stiffness","authors":"Yajun Meng , Amannisa Tuersuntuoheti , Siyu Jiang , Jiayi Xie , Zejun Yue , Dingwen Xu , Xueyu Geng , Xiang Lian , Lide Xie , Lanping Amy Sung , Xifu Wang , Jing Zhou , Weijuan Yao","doi":"10.1016/j.mbm.2025.100117","DOIUrl":"10.1016/j.mbm.2025.100117","url":null,"abstract":"<div><div>The monocyte/macrophage infiltration plays critical roles in the development of atherosclerosis. Arterial stiffness is a cholesterol-independent risk factor for cardiovascular events. The regulation of arterial stiffness on biomechanics of macrophages and its underlying mechanism remains unclear. We prepared polyacrylamide gels with low and high stiffness that corresponded to healthy and diseased blood vessels, respectively. We found that macrophages cultured on stiff matrix had increased rigidity and migration ability compared to those on soft matrix. An actin capping protein, tropomodulin1 (Tmod1) was upregulated in macrophages by stiff matrix and in arteries with high stiffness. Further analyses showed that deficiency of Tmod1 in macrophages completely or partially prevented the changes in actin polymerization, cell adhesion and cell spreading induced by stiff matrix. Overexpression of Tmod1 in macrophages enhanced actin polymerization, cell adhesion and spreading on stiff matrix. Tmod1 was involved in the regulation of vinculin expression and formation of focal adhesion in macrophages on stiff matrix. Finally, the deficiency of Tmod1 in macrophages retarded the formation of atherosclerotic plaques in blood vessels with high matrix stiffness. The results suggest that Tmod1 was a key regulator in macrophage rigidity and migration on stiff substrate. The present work will help us to understand the biomechanical mechanisms for the development of atherosclerosis.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 2","pages":"Article 100117"},"PeriodicalIF":0.0,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143519903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Ultrasound imaging and regulated mechanotransduction for characteristics, regeneration, and therapeutics of bone","authors":"Yi-Xian Qin","doi":"10.1016/j.mbm.2025.100116","DOIUrl":"10.1016/j.mbm.2025.100116","url":null,"abstract":"<div><div>Ultrasound imaging has been widely used in clinical diagnoses, such as B-mode and M-mode ultrasound imaging for cardiovascular, abdomen, OB-Gyn, and other soft tissue and organs in clinical diagnoses. Ultrasound imaging has traditionally been limited in its application to bone because of the high acoustic impedance and density of trabecular and cortical bone structure and density alterations, high wave reflection, absorption, scattering, and low penetration, which result in significant reflection and attenuation of ultrasonic energy in such mineral tissues. Recent advancements in quantitative ultrasound technology have opened new possibilities for noninvasive characteristics of bone quality through transmitted or backscattered signals, offering a radiation-free alternative to traditional imaging modalities like dual-energy X-ray absorptiometry (DEX), X-rays, and CT scans. In addition, low-intensity ultrasound (LIUS) has been studied and applied to promote bone regeneration and fracture healing through induced mechanotransduction in tissue and cells. The field of bone ultrasound encompasses fundamental research on the interaction of elastic waves with cortical and trabecular bone microstructures, the development of innovative imaging methodologies and medical applications such as bone health assessment for osteoporosis diagnosis, therapeutic use of LIUS, and phase aberration correction inside the skull. This work has highlighted recent developments and advancements in ultrasound diagnosis and therapeutics, induced cellular and molecular pathways, and future directions using ultrasound as a promising imaging tool and treatment method.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 1","pages":"Article 100116"},"PeriodicalIF":0.0,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143480292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Toward a clear relationship between mechanical signals and bone adaptation","authors":"Chenlu Wang, Ruisen Fu, Haisheng Yang","doi":"10.1016/j.mbm.2025.100115","DOIUrl":"10.1016/j.mbm.2025.100115","url":null,"abstract":"<div><div>Bone adapts according to the mechanical environment, and this adaptation can be visualized by altering its shape, size, and microarchitecture. Bone adaptation was recognized more than a century ago, with a description presented in <em>The Law of Bone Remodeling</em>. Furthermore, the conceptual model of “<em>The Mechanostat</em>” provides a quantitative relationship between the magnitude of bone tissue deformation (strain) and bone adaptive responses. However, upon maintaining a constant strain magnitude, various bone responses were observed experimentally under different loading parameters (e.g., frequency, rate, number of load cycles, rest insertion, and waveform). Nevertheless, the precise relationship between mechanical signals and bone adaptation remains unclear. Accordingly, we reviewed <em>in vivo</em> loading studies to determine the quantitative relationships between various mechanical signals and bone adaptive responses in various animal loading models. Additionally, we explored how these relationships are influenced by pathophysiological factors, such as age, sex, and estrogen deficiency. Moreover, mechanistic studies that consider cellular mechanical microenvironments to explain these quantitative relationships are discussed. A general formula that considers the bone adaptive response as a function of different loading parameters was proposed. This review may enhance our understanding of bone adaptation and offer guidance for clinicians to develop effective mechanotherapies to prevent bone loss.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 1","pages":"Article 100115"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hanxiao Chen , Chengxiu Peng , Fei Fang , Yuhao Li , Xiaran Liu , Ying Hu , Guixue Wang , Xiaoheng Liu , Yang Shen
{"title":"Angiogenesis within atherosclerotic plaques: Mechanical regulation, molecular mechanism and clinical diagnosis","authors":"Hanxiao Chen , Chengxiu Peng , Fei Fang , Yuhao Li , Xiaran Liu , Ying Hu , Guixue Wang , Xiaoheng Liu , Yang Shen","doi":"10.1016/j.mbm.2025.100114","DOIUrl":"10.1016/j.mbm.2025.100114","url":null,"abstract":"<div><div>Atherosclerosis (AS) is a disease characterized by focal cholesterol accumulation and insoluble inflammation in arterial intima, leading to the formation of an atherosclerotic plaque consisting of lipids, cells, and fibrous matrix. The presence of plaque can restrict or obstruct blood flow, resulting in arterial stenosis and local mechanical microenvironment changes including flow shear stress, vascular matrix stiffness, and plaque structural stress. Neovascularization within the atherosclerotic plaque plays a crucial role in both plaque growth and destabilization, potentially leading to plaque rupture and fatal embolism. However, the exact interactions between neovessels and plaque remain unclear. In this review, we provide a comprehensive analysis of the origin of intraplaque neovessels, the contributing factors, underlying molecular mechanisms, and associated signaling pathways. We specifically emphasize the role of mechanical factors contributing to angiogenesis in atherosclerotic plaques. Additionally, we summarize the imaging techniques and therapeutic strategies for intraplaque neovessels to enhance our understanding of this field.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 1","pages":"Article 100114"},"PeriodicalIF":0.0,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143428126","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mingxing Ouyang , Weihui Chen , Ting Zhou , Hongjie Liu , Lei Liu , Bing Bu , Linhong Deng
{"title":"The underlying difference of metastatic and non-metastatic breast cancer cells in configuring type I collagen fibres to promote migration by cell mechanics","authors":"Mingxing Ouyang , Weihui Chen , Ting Zhou , Hongjie Liu , Lei Liu , Bing Bu , Linhong Deng","doi":"10.1016/j.mbm.2025.100113","DOIUrl":"10.1016/j.mbm.2025.100113","url":null,"abstract":"<div><div>The progression of tumors is heavily influenced by mechanical properties of their microenvironment. In this work, we applied micropatterned models with varying distances and shapes to investigate the differences between metastatic MDA-MB-231 and non-metastatic MCF-7 breast cancer cells in reconfiguring extracellular matrix to promote cell migration induced by cell mechanics. Both cancer cells were able to rearrange type I collagen (COL) to form fibre threads, in which MDA-MB-231 consistently migrated more rapidly than MCF-7, ranging from geometrical square arrays with different spacings to complex polygonal models. MDA-MB-231 displayed higher capability of reorganizing fibre bundles at longer distance (800 μm). Further looking for differences in cell molecular mechanisms, siRNA knockdown inhibiting either integrin β1 or Piezo1 decreased fibre assembly and reduced the difference in COL remodeling and migration between two cancer cells. MDA-MB-231 showed inhibited migration with integrin knockdown, whereas scattering migration with Piezo1 knockdown, indicating cells losing directional mechanosensation. After inhibiting junctional E-cadherin with siRNA, MCF-7 cells migrated faster, resulting in reduced difference in comparison to MDA-MB-231 that didn't express E-cadherin. In summary, this work has explored the biomechanical differences between metastatic and non-metastatic breast cancer cells regarding COL fibre matrix remodeling and cell movements. The significant differences in E-cadherin expression in the two breast cancer cells had an effect on cell migrations. The results of this study provide research approaches for evaluating therapeutic effort on breast cancer.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 2","pages":"Article 100113"},"PeriodicalIF":0.0,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143510220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vennila Suriyagandhi , Ying Ma , Veronica Paparozzi , Tiziana Guarnieri , Biagio Di Pietro , Giovanna Maria Dimitri , Paolo Tieri , Claudia Sala , Darong Lai , Christine Nardini
{"title":"Mechanotransduction and inflammation: An updated comprehensive representation","authors":"Vennila Suriyagandhi , Ying Ma , Veronica Paparozzi , Tiziana Guarnieri , Biagio Di Pietro , Giovanna Maria Dimitri , Paolo Tieri , Claudia Sala , Darong Lai , Christine Nardini","doi":"10.1016/j.mbm.2024.100112","DOIUrl":"10.1016/j.mbm.2024.100112","url":null,"abstract":"<div><div>Mechanotransduction is the process that enables the conversion of mechanical cues into biochemical signaling. While all our cells are well known to be sensitive to such stimuli, the details of the systemic interaction between mechanical input and inflammation are not well integrated. Often, indeed, they are considered and studied in relatively compartmentalized areas, and we therefore argue here that to understand the relationship of mechanical stimuli with inflammation – with a high translational potential - it is crucial to offer and analyze a unified view of mechanotransduction. We therefore present here pathway representation, recollected with the standard systems biology markup language (SBML) and explored with network biology approaches, offering RAC1 as an exemplar and emerging molecule with potential for medical translation.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 1","pages":"Article 100112"},"PeriodicalIF":0.0,"publicationDate":"2024-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara J. Olsen , Rose E. Leader , Abigail L. Mortimer , Bethany Almeida
{"title":"Matrix stiffness and viscoelasticity influence human mesenchymal stem cell immunomodulation","authors":"Sara J. Olsen , Rose E. Leader , Abigail L. Mortimer , Bethany Almeida","doi":"10.1016/j.mbm.2024.100111","DOIUrl":"10.1016/j.mbm.2024.100111","url":null,"abstract":"<div><div>Human mesenchymal stem cells (hMSCs) have immense wound healing potential due to their immunomodulatory behavior. To control this behavior and reduce heterogeneity, researchers look to biomaterials, as matrix stiffness and viscoelasticity have been shown to control hMSC immunomodulation. However, the understanding of the effects of these biophysical cues on hMSC immunomodulation remains limited; a broad study investigating the potentially synergistic effects of matrix stiffness and viscoelasticity on hMSC immunomodulation is needed in order to support future work developing biomaterials for hMSC wound healing applications. We developed polyacrylamide (PAAm) gels with varying matrix stiffnesses with or without a viscoelastic element and explored the effects of these on hMSC-matrix interactions and immunomodulatory cytokine expression in both a normal growth media and an immunomodulatory growth media mimetic of a chronic, non-healing wound. Expression of IL-10, VEGF, and PGE<sub>2</sub> were upregulated in immunomodulatory growth media over normal growth media, demonstrating the synergistic effects of biochemical signaling on hMSC immunomodulatory behavior. In addition, the addition of a viscoelastic element had both inhibitory and accentuating effects based on the cytokine and biochemical signaling in the cell culture media. Overall, this study provides a broad perspective on the immunomodulatory behavior of hMSCs due to stiffness and viscoelasticity.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 1","pages":"Article 100111"},"PeriodicalIF":0.0,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143165418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}