{"title":"Synthetic mechanoreceptor engineering: From genetic encoding to DNA nanotechnology-based reprogramming","authors":"Sihui Yang , Zhou Nie","doi":"10.1016/j.mbm.2025.100160","DOIUrl":null,"url":null,"abstract":"<div><div>Precise modulation of mechanoreceptor-mediated signal transduction is crucial for decoding cellular mechanotransduction mechanisms and programming cell fate. This review provides a comprehensive summary of recent advances in engineering synthetic mechanoreceptors, spanning from protein-centric genetic encoding to DNA nanotechnology-based non-genetic reprogramming strategies. Genetic engineering strategies employ protein structure encoding and site-directed mutagenesis to reprogram force-response functions in natural mechanoreceptors. As a complementary non-genetic approach, DNA nanotechnology leverages its programmability, modularity, and predictable mechanical properties to achieve precise control over receptor functionalities. The flourishing development of DNA mechanosensitive nanodevices has provided a promising synthetic toolkit for manipulating mechanoreceptors, enabling precise control over receptor spatial organization and signal transduction. A key innovation is the development of novel DNA-functionalized artificial mechanoreceptors (AMRs), which confer force-responsiveness to naturally non-mechanosensitive receptors without genetic modification, thereby enabling customized mechanotransduction and mechanobiological applications. Collectively, this paradigm shift highlights DNA-based non-genetic receptor engineering as a versatile and powerful toolkit, paving new avenues for mechanobiology research and pioneering force-directed therapeutic strategies in regenerative medicine.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 4","pages":"Article 100160"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907025000488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Precise modulation of mechanoreceptor-mediated signal transduction is crucial for decoding cellular mechanotransduction mechanisms and programming cell fate. This review provides a comprehensive summary of recent advances in engineering synthetic mechanoreceptors, spanning from protein-centric genetic encoding to DNA nanotechnology-based non-genetic reprogramming strategies. Genetic engineering strategies employ protein structure encoding and site-directed mutagenesis to reprogram force-response functions in natural mechanoreceptors. As a complementary non-genetic approach, DNA nanotechnology leverages its programmability, modularity, and predictable mechanical properties to achieve precise control over receptor functionalities. The flourishing development of DNA mechanosensitive nanodevices has provided a promising synthetic toolkit for manipulating mechanoreceptors, enabling precise control over receptor spatial organization and signal transduction. A key innovation is the development of novel DNA-functionalized artificial mechanoreceptors (AMRs), which confer force-responsiveness to naturally non-mechanosensitive receptors without genetic modification, thereby enabling customized mechanotransduction and mechanobiological applications. Collectively, this paradigm shift highlights DNA-based non-genetic receptor engineering as a versatile and powerful toolkit, paving new avenues for mechanobiology research and pioneering force-directed therapeutic strategies in regenerative medicine.