Piezo1通过蛋白激酶C激活红细胞中的一氧化氮合酶,并在糖尿病中增加活性

Gurneet S. Sangha , Lauren V. Smith , Marzyeh Kheradmand , Kashif M. Munir , Nimisha Rangachar , Callie M. Weber , Zohreh Safari , Stephen C. Rogers , Allan Doctor , Alisa Morss Clyne
{"title":"Piezo1通过蛋白激酶C激活红细胞中的一氧化氮合酶,并在糖尿病中增加活性","authors":"Gurneet S. Sangha ,&nbsp;Lauren V. Smith ,&nbsp;Marzyeh Kheradmand ,&nbsp;Kashif M. Munir ,&nbsp;Nimisha Rangachar ,&nbsp;Callie M. Weber ,&nbsp;Zohreh Safari ,&nbsp;Stephen C. Rogers ,&nbsp;Allan Doctor ,&nbsp;Alisa Morss Clyne","doi":"10.1016/j.mbm.2025.100145","DOIUrl":null,"url":null,"abstract":"<div><div>Nitric oxide (NO) is a key signaling molecule in maintaining cardiovascular health. While endothelial cells were initially thought to exclusively contain endothelial nitric oxide synthase (eNOS), an enzyme that produces NO, recent evidence suggests that red blood cells (RBC) also contain functional eNOS that impacts cardiovascular function. However, the mechanisms driving RBC eNOS activation are not well understood. Like endothelial cells, RBC are mechanosensitive via the stretch-activated piezo1 Ca<sup>2+</sup> channel. Therefore, we investigated how piezo1 stimulation induced RBC and endothelial eNOS phosphorylation. We further examined how this mechanism is affected during diabetes, a condition known to impair vascular NO bioavailability. Our results reveal that piezo1 stimulation activated RBC eNOS via protein kinase C (PKC) and endothelial eNOS partially via protein kinase B (Akt). Surprisingly, piezo1-stimulation increased eNOS phosphorylation at the Ser1177 activation site nearly 20-fold in RBC from diabetic patients compared to 5.5-fold in RBC from non-diabetic patients. These findings highlight important differences in eNOS activation between RBC and endothelial cells and suggest potential biomolecular markers for targeting vascular NO bioavailability in health and disease.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 3","pages":"Article 100145"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Piezo1 activates nitric oxide synthase in red blood cells via protein kinase C with increased activity in diabetes\",\"authors\":\"Gurneet S. Sangha ,&nbsp;Lauren V. Smith ,&nbsp;Marzyeh Kheradmand ,&nbsp;Kashif M. Munir ,&nbsp;Nimisha Rangachar ,&nbsp;Callie M. Weber ,&nbsp;Zohreh Safari ,&nbsp;Stephen C. Rogers ,&nbsp;Allan Doctor ,&nbsp;Alisa Morss Clyne\",\"doi\":\"10.1016/j.mbm.2025.100145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Nitric oxide (NO) is a key signaling molecule in maintaining cardiovascular health. While endothelial cells were initially thought to exclusively contain endothelial nitric oxide synthase (eNOS), an enzyme that produces NO, recent evidence suggests that red blood cells (RBC) also contain functional eNOS that impacts cardiovascular function. However, the mechanisms driving RBC eNOS activation are not well understood. Like endothelial cells, RBC are mechanosensitive via the stretch-activated piezo1 Ca<sup>2+</sup> channel. Therefore, we investigated how piezo1 stimulation induced RBC and endothelial eNOS phosphorylation. We further examined how this mechanism is affected during diabetes, a condition known to impair vascular NO bioavailability. Our results reveal that piezo1 stimulation activated RBC eNOS via protein kinase C (PKC) and endothelial eNOS partially via protein kinase B (Akt). Surprisingly, piezo1-stimulation increased eNOS phosphorylation at the Ser1177 activation site nearly 20-fold in RBC from diabetic patients compared to 5.5-fold in RBC from non-diabetic patients. These findings highlight important differences in eNOS activation between RBC and endothelial cells and suggest potential biomolecular markers for targeting vascular NO bioavailability in health and disease.</div></div>\",\"PeriodicalId\":100900,\"journal\":{\"name\":\"Mechanobiology in Medicine\",\"volume\":\"3 3\",\"pages\":\"Article 100145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanobiology in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949907025000336\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907025000336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一氧化氮(NO)是维持心血管健康的关键信号分子。虽然内皮细胞最初被认为只含有内皮型一氧化氮合酶(eNOS),一种产生NO的酶,但最近的证据表明,红细胞(RBC)也含有影响心血管功能的功能性eNOS。然而,驱动RBC eNOS激活的机制尚不清楚。与内皮细胞一样,红细胞通过拉伸激活的piezo1 Ca2+通道具有机械敏感性。因此,我们研究了piezo1刺激如何诱导红细胞和内皮细胞eNOS磷酸化。我们进一步研究了这种机制在糖尿病中是如何受到影响的,糖尿病是一种已知会损害血管NO生物利用度的疾病。我们的研究结果表明,piezo1刺激通过蛋白激酶C (PKC)激活红细胞eNOS,部分通过蛋白激酶B (Akt)激活内皮细胞eNOS。令人惊讶的是,piezo1刺激使糖尿病患者红细胞Ser1177活化位点的eNOS磷酸化增加了近20倍,而非糖尿病患者红细胞的eNOS磷酸化增加了5.5倍。这些发现强调了红细胞和内皮细胞之间eNOS激活的重要差异,并提出了针对健康和疾病中血管NO生物利用度的潜在生物分子标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Piezo1 activates nitric oxide synthase in red blood cells via protein kinase C with increased activity in diabetes

Piezo1 activates nitric oxide synthase in red blood cells via protein kinase C with increased activity in diabetes
Nitric oxide (NO) is a key signaling molecule in maintaining cardiovascular health. While endothelial cells were initially thought to exclusively contain endothelial nitric oxide synthase (eNOS), an enzyme that produces NO, recent evidence suggests that red blood cells (RBC) also contain functional eNOS that impacts cardiovascular function. However, the mechanisms driving RBC eNOS activation are not well understood. Like endothelial cells, RBC are mechanosensitive via the stretch-activated piezo1 Ca2+ channel. Therefore, we investigated how piezo1 stimulation induced RBC and endothelial eNOS phosphorylation. We further examined how this mechanism is affected during diabetes, a condition known to impair vascular NO bioavailability. Our results reveal that piezo1 stimulation activated RBC eNOS via protein kinase C (PKC) and endothelial eNOS partially via protein kinase B (Akt). Surprisingly, piezo1-stimulation increased eNOS phosphorylation at the Ser1177 activation site nearly 20-fold in RBC from diabetic patients compared to 5.5-fold in RBC from non-diabetic patients. These findings highlight important differences in eNOS activation between RBC and endothelial cells and suggest potential biomolecular markers for targeting vascular NO bioavailability in health and disease.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信