{"title":"Fighting cardiac fibrosis using the chemomechanical method","authors":"Yunlong Huo","doi":"10.1016/j.mbm.2025.100147","DOIUrl":null,"url":null,"abstract":"<div><div>Diffuse myocardial fibrosis affects disease severity and outcomes in multiple heart diseases. A recent study in NATURE has shown a chemomechanical method to regulate myocardial stromal cell states to suppress fibrosis in vitro and in vivo, which provides a proof-of-concept therapeutic strategy. This study reviews the proposed chemomechanical method and other recent biotechnologies to fight cardiac fibrosis.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 3","pages":"Article 100147"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294990702500035X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Diffuse myocardial fibrosis affects disease severity and outcomes in multiple heart diseases. A recent study in NATURE has shown a chemomechanical method to regulate myocardial stromal cell states to suppress fibrosis in vitro and in vivo, which provides a proof-of-concept therapeutic strategy. This study reviews the proposed chemomechanical method and other recent biotechnologies to fight cardiac fibrosis.