Zhenkang Wen , Lei Lei , Haozhi Zhang , Zheyu Jin , Zhengming Shan , Weiyang Liu , Wenxue Tong , Jiankun Xu , Ling Qin
{"title":"含镁植入物促进骨愈合:机械生物学的观点","authors":"Zhenkang Wen , Lei Lei , Haozhi Zhang , Zheyu Jin , Zhengming Shan , Weiyang Liu , Wenxue Tong , Jiankun Xu , Ling Qin","doi":"10.1016/j.mbm.2025.100161","DOIUrl":null,"url":null,"abstract":"<div><div>Unlike traditional implants primarily composed of bioinert materials, magnesium (Mg) -a degradable biomaterial - offers significant promise for next-generation bone healing implants, whether utilized as a primary structural component or a supporting material. While most research focuses on Mg's bioactive and osteoimmunological effect, this review highlights its mechanobiological role, summarizing the merits of Mg-containing implants in facilitating mechanotransduction and associated cellular events during the bone healing. Beyond introducing Mg's biomechanical benefits in preventing stress shielding, this review synthesizes its unique attributes: exceptional bone-implant integration and synergistic effects with physical stimuli to amplify new bone formation. Crucially, we also summarize the activation of mechanotransduction signaling pathways, providing a mechanistic basis for Mg's positive mechanobiological influence. Finally, we discuss challenges arising from the interaction between physical loading and Mg degradation, alongside future perspectives and potential solutions to bridge the gap between theory and clinical application, thereby accelerating translation applications of Mg-containing implants.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 4","pages":"Article 100161"},"PeriodicalIF":0.0000,"publicationDate":"2025-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnesium-containing implants enhance bone healing: A mechanobiological perspective\",\"authors\":\"Zhenkang Wen , Lei Lei , Haozhi Zhang , Zheyu Jin , Zhengming Shan , Weiyang Liu , Wenxue Tong , Jiankun Xu , Ling Qin\",\"doi\":\"10.1016/j.mbm.2025.100161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Unlike traditional implants primarily composed of bioinert materials, magnesium (Mg) -a degradable biomaterial - offers significant promise for next-generation bone healing implants, whether utilized as a primary structural component or a supporting material. While most research focuses on Mg's bioactive and osteoimmunological effect, this review highlights its mechanobiological role, summarizing the merits of Mg-containing implants in facilitating mechanotransduction and associated cellular events during the bone healing. Beyond introducing Mg's biomechanical benefits in preventing stress shielding, this review synthesizes its unique attributes: exceptional bone-implant integration and synergistic effects with physical stimuli to amplify new bone formation. Crucially, we also summarize the activation of mechanotransduction signaling pathways, providing a mechanistic basis for Mg's positive mechanobiological influence. Finally, we discuss challenges arising from the interaction between physical loading and Mg degradation, alongside future perspectives and potential solutions to bridge the gap between theory and clinical application, thereby accelerating translation applications of Mg-containing implants.</div></div>\",\"PeriodicalId\":100900,\"journal\":{\"name\":\"Mechanobiology in Medicine\",\"volume\":\"3 4\",\"pages\":\"Article 100161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanobiology in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S294990702500049X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S294990702500049X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Magnesium-containing implants enhance bone healing: A mechanobiological perspective
Unlike traditional implants primarily composed of bioinert materials, magnesium (Mg) -a degradable biomaterial - offers significant promise for next-generation bone healing implants, whether utilized as a primary structural component or a supporting material. While most research focuses on Mg's bioactive and osteoimmunological effect, this review highlights its mechanobiological role, summarizing the merits of Mg-containing implants in facilitating mechanotransduction and associated cellular events during the bone healing. Beyond introducing Mg's biomechanical benefits in preventing stress shielding, this review synthesizes its unique attributes: exceptional bone-implant integration and synergistic effects with physical stimuli to amplify new bone formation. Crucially, we also summarize the activation of mechanotransduction signaling pathways, providing a mechanistic basis for Mg's positive mechanobiological influence. Finally, we discuss challenges arising from the interaction between physical loading and Mg degradation, alongside future perspectives and potential solutions to bridge the gap between theory and clinical application, thereby accelerating translation applications of Mg-containing implants.