Mechanobiology in Medicine最新文献

筛选
英文 中文
Viscoelasticity of ECM and cells—origin, measurement and correlation ECM 和细胞的粘弹性--起源、测量和相关性
Mechanobiology in Medicine Pub Date : 2024-07-31 DOI: 10.1016/j.mbm.2024.100082
Zhiqiang Liu, Si Da Ling, Kaini Liang, Yihan Chen, Yudi Niu, Lei Sun, Junyang Li, Yanan Du
{"title":"Viscoelasticity of ECM and cells—origin, measurement and correlation","authors":"Zhiqiang Liu,&nbsp;Si Da Ling,&nbsp;Kaini Liang,&nbsp;Yihan Chen,&nbsp;Yudi Niu,&nbsp;Lei Sun,&nbsp;Junyang Li,&nbsp;Yanan Du","doi":"10.1016/j.mbm.2024.100082","DOIUrl":"10.1016/j.mbm.2024.100082","url":null,"abstract":"<div><p>The extracellular matrix (ECM) and cells are crucial components of natural tissue microenvironments, and they both demonstrate dynamic mechanical properties, particularly viscoelastic behaviors, when exposed to external stress or strain over time. The capacity to modify the mechanical properties of cells and ECM is crucial for gaining insight into the development, physiology, and pathophysiology of living organisms. As an illustration, researchers have developed hydrogels with diverse compositions to mimic the properties of the native ECM and use them as substrates for cell culture. The behavior of cultured cells can be regulated by modifying the viscoelasticity of hydrogels. Moreover, there is widespread interest across disciplines in accurately measuring the mechanical properties of cells and the surrounding ECM, as well as exploring the interactive relationship between these components. Nevertheless, the lack of standardized experimental methods, conditions, and other variables has hindered systematic comparisons and summaries of research findings on ECM and cell viscoelasticity. In this review, we delve into the origins of ECM and cell viscoelasticity, examine recently developed methods for measuring ECM and cell viscoelasticity, and summarize the potential interactions between cell and ECM viscoelasticity. Recent research has shown that both ECM and cell viscoelasticity experience alterations during in vivo pathogenesis, indicating the potential use of tailored viscoelastic ECM and cells in regenerative medicine.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 4","pages":"Article 100082"},"PeriodicalIF":0.0,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000457/pdfft?md5=d6a24f3aa25c8acf54e6bcfd62d47df9&pid=1-s2.0-S2949907024000457-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142058276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A microbiome-dependent gut-bone axis determines skeletal benefits from mechanical loading 依赖微生物群的肠道-骨骼轴决定了机械负荷对骨骼的益处
Mechanobiology in Medicine Pub Date : 2024-07-26 DOI: 10.1016/j.mbm.2024.100084
X. Edward Guo
{"title":"A microbiome-dependent gut-bone axis determines skeletal benefits from mechanical loading","authors":"X. Edward Guo","doi":"10.1016/j.mbm.2024.100084","DOIUrl":"10.1016/j.mbm.2024.100084","url":null,"abstract":"<div><p>A recent study published in <em>Cell Metabolism</em> entitled “Gut microbial alterations in arginine metabolism determine bone mechanical adaptation” demonstrated that administration of L-arginine enhanced bone mechanical adaptation by activating a nitric oxide-calcium feedback loop in osteocytes. The findings revealed that mechanical regulation of bone adaptation is associated with gut microbiota. The underlying cause of heterogeneity of bone mechanoresponsiveness was the significant difference in the composition of the gut microbiota, in which the family <em>Lachnospiraceae</em> contributed to the inter-individual high variability in bone mechanical adaptation. Additionally, administration of <em>Lachnospiraceae</em> exhibited increased expression levels of L-citrulline and L-arginine and enhanced bone mechanoresponsiveness in recipients. Collectively, this study provides mechanistic insights into inter-individual variability of the gut microbial, which is related to the heterogeneity of bone mechanical adaptation and provides a novel preventive and therapeutic strategy to anti-osteoporotic for maximizing bone mechanoresponsiveness via the microbiota-metabolite axis.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 3","pages":"Article 100084"},"PeriodicalIF":0.0,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000470/pdfft?md5=01576b678e93cfb75c71a174b559d30e&pid=1-s2.0-S2949907024000470-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141851738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From sequence to mechanobiology? Promises and challenges for AlphaFold 3 从序列到机械生物学?阿尔法折叠 3 的前景与挑战
Mechanobiology in Medicine Pub Date : 2024-07-25 DOI: 10.1016/j.mbm.2024.100083
Francesco Zonta , Sergio Pantano
{"title":"From sequence to mechanobiology? Promises and challenges for AlphaFold 3","authors":"Francesco Zonta ,&nbsp;Sergio Pantano","doi":"10.1016/j.mbm.2024.100083","DOIUrl":"10.1016/j.mbm.2024.100083","url":null,"abstract":"<div><p>Interactions between macromolecules orchestrate many mechanobiology processes. However, progress in the field has often been hindered by the monetary and time costs of obtaining reliable experimental structures. In recent years, deep-learning methods, such as AlphaFold, have democratized access to high-quality predictions of the structural properties of proteins and other macromolecules. The newest implementation, AlphaFold 3, significantly expands the applications of its predecessor, AlphaFold 2, by incorporating reliable models for small molecules and nucleic acids and enhancing the prediction of macromolecular complexes. While several limitations still exist, the continuous improvement of machine learning methods like AlphaFold is producing a significant revolution in the field. The possibility of easily accessing structural predictions of biomolecular complexes may create substantial impacts in mechanobiology. Indeed, structural studies are at the basis of several applications in the field, such as drug discovery for mechanosensing proteins, development of mechanotherapy, understanding the mechanotransduction mechanisms and the mechanistic basis of diseases, or designing biomaterials for tissue engineering.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 3","pages":"Article 100083"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000469/pdfft?md5=e9e8d648eaef2a1a12526a3a9cbe4a52&pid=1-s2.0-S2949907024000469-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141842240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of gravity, microgravity or microgravity simulation on early mouse embryogenesis: A review of the first two space embryo studies 重力、微重力或微重力模拟对小鼠早期胚胎发育的影响:前两项太空胚胎研究综述
Mechanobiology in Medicine Pub Date : 2024-07-20 DOI: 10.1016/j.mbm.2024.100081
Douglas M. Ruden , Daniel A. Rappolee
{"title":"Effects of gravity, microgravity or microgravity simulation on early mouse embryogenesis: A review of the first two space embryo studies","authors":"Douglas M. Ruden ,&nbsp;Daniel A. Rappolee","doi":"10.1016/j.mbm.2024.100081","DOIUrl":"10.1016/j.mbm.2024.100081","url":null,"abstract":"<div><p>Many simulated micro-gravity (micro-G) experiments on earth suggest that micro-G conditions are not compatible with early mammalian embryo development. Recently, the first two “space embryo” studies have been published showing that early mouse embryo development can occur in real microgravity (real micro-G) conditions in orbit. In the first of these studies, published in 2020, Lei and collaborators developed automated mini-incubator (AMI) devices for mouse embryos facilitating cultivation, microscopic observation, and fixation<sup>1</sup>. Within these AMI apparatuses, 3400 non-frozen 2-cell embryos were launched in a recoverable satellite, experiencing sustained microgravity (∼0.001G) for 64 ​h post-orbit before fixation in space and recovery on earth. In a subsequent study, in 2023, Wakayama and colleagues<sup>2</sup> devised Embryo Thawing and Culturing (ETC) devices, enabling manual thawing, cultivation, and fixation of frozen 2-cell mouse embryos by a trained astronaut aboard the International Space Station (ISS). Within the ETCs, a total of 720 2-cell mouse embryos underwent thawing and cultivation for 4 days on the ISS, subject to either microgravity (n ​= ​360) and simulated-1G (n ​= ​360) conditions. The primary findings from both space embryo experiments indicate that mouse embryos can progress through embryogenesis from the 2-cell stage to the blastocyst stage under real micro-G conditions with few defects. Collectively, these studies propose the potential for mammalian reproduction under real micro-G conditions, challenging earlier simulated micro-G research suggesting otherwise.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 4","pages":"Article 100081"},"PeriodicalIF":0.0,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000445/pdfft?md5=7fac1cfeb0aa7e577b2502ddcad5ca49&pid=1-s2.0-S2949907024000445-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141732205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Low intensity mechanical signals promote proliferation in a cell-specific manner: Tailoring a non-drug strategy to enhance biomanufacturing yields 低强度机械信号以特异性方式促进细胞增殖定制非药物策略,提高生物制造产量
Mechanobiology in Medicine Pub Date : 2024-07-02 DOI: 10.1016/j.mbm.2024.100080
M. Ete Chan , Christopher Ashdown , Lia Strait , Sishir Pasumarthy , Abdullah Hassan , Steven Crimarco , Chanpreet Singh , Vihitaben S. Patel , Gabriel Pagnotti , Omor Khan , Gunes Uzer , Clinton T. Rubin
{"title":"Low intensity mechanical signals promote proliferation in a cell-specific manner: Tailoring a non-drug strategy to enhance biomanufacturing yields","authors":"M. Ete Chan ,&nbsp;Christopher Ashdown ,&nbsp;Lia Strait ,&nbsp;Sishir Pasumarthy ,&nbsp;Abdullah Hassan ,&nbsp;Steven Crimarco ,&nbsp;Chanpreet Singh ,&nbsp;Vihitaben S. Patel ,&nbsp;Gabriel Pagnotti ,&nbsp;Omor Khan ,&nbsp;Gunes Uzer ,&nbsp;Clinton T. Rubin","doi":"10.1016/j.mbm.2024.100080","DOIUrl":"10.1016/j.mbm.2024.100080","url":null,"abstract":"<div><p>Biomanufacturing relies on living cells to produce biotechnology-based therapeutics, tissue engineering constructs, vaccines, and a vast range of agricultural and industrial products. With the escalating demand for these bio-based products, any process that could improve yields and shorten outcome timelines by accelerating cell proliferation would have a significant impact across the discipline. While these goals are primarily achieved using <em>biological</em> or <em>chemical</em> strategies, harnessing cell mechanosensitivity represents a promising – albeit less studied – <em>physical</em> pathway to promote bioprocessing endpoints, yet identifying which mechanical parameters influence cell activities has remained elusive. We tested the hypothesis that mechanical signals, delivered non-invasively using low-intensity vibration (LIV; &lt;1 ​g, 10–500 ​Hz), will enhance cell expansion, and determined that any unique signal configuration was not equally influential across a range of cell types. Varying frequency, intensity, duration, refractory period, and daily doses of LIV increased proliferation in Chinese Hamster Ovary (CHO)-adherent cells (+79% in 96 ​hr) using a particular set of LIV parameters (0.2 ​g, 500 ​Hz, 3 ​× ​30 ​min/d, 2 ​hr refractory period), yet this same mechanical input <em>suppressed</em> proliferation in CHO-suspension cells (−13%). Another set of LIV parameters (30 ​Hz, 0.7 ​g, 2 ​× ​60 ​min/d, 2 ​hr refractory period) however, were able to increase the proliferation of CHO-suspension cells by 210% and T-cells by 20.3%. Importantly, we also reported that T-cell response to LIV was in-part dependent upon AKT phosphorylation, as inhibiting AKT phosphorylation reduced the proliferative effect of LIV by over 60%, suggesting that suspension cells utilize mechanism(s) similar to adherent cells to sense specific LIV signals. Particle image velocimetry combined with finite element modeling showed high transmissibility of these signals across fluids (&gt;90%), and LIV effectively scaled up to T75 flasks. Ultimately, when LIV is tailored to the target cell population, it's highly efficient transmission across media represents a means to non-invasively augment biomanufacturing endpoints for both adherent and suspended cells, and holds immediate applications, ranging from small-scale, patient-specific personalized medicine to large-scale commercial bio-centric production challenges.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 4","pages":"Article 100080"},"PeriodicalIF":0.0,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000433/pdfft?md5=018ef78186c038e68b40852d4fefb32a&pid=1-s2.0-S2949907024000433-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141736469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanobiomaterials: Harnessing mechanobiology principles for tissue repair and regeneration 机械生物材料:利用机械生物学原理促进组织修复和再生
Mechanobiology in Medicine Pub Date : 2024-05-16 DOI: 10.1016/j.mbm.2024.100079
Xiao Lin , Hua Yang , Yi Xia , Kang Wu , Fengcheng Chu , Huan Zhou , Huajian Gao , Lei Yang
{"title":"Mechanobiomaterials: Harnessing mechanobiology principles for tissue repair and regeneration","authors":"Xiao Lin ,&nbsp;Hua Yang ,&nbsp;Yi Xia ,&nbsp;Kang Wu ,&nbsp;Fengcheng Chu ,&nbsp;Huan Zhou ,&nbsp;Huajian Gao ,&nbsp;Lei Yang","doi":"10.1016/j.mbm.2024.100079","DOIUrl":"10.1016/j.mbm.2024.100079","url":null,"abstract":"<div><p>Mechanical stimuli are known to play critical roles in mediating tissue repair and regeneration. Recently, this knowledge has led to a paradigm shift toward proactive programming of biological functionalities of biomaterials by leveraging mechanics–geometry–biofunction relationships, which are beginning to shape the newly emerging field of mechanobiomaterials. To profile this emerging field, this article aims to elucidate the fundamental principles in modulating biological responses with material–tissue mechanical interactions, illustrate recent findings on the relationships between material properties and biological responses, discuss the importance of mathematical/physical models and numerical simulations in optimizing material properties and geometry, and outline design strategies for mechanobiomaterials and their potential for tissue repair and regeneration. Given that the field of mechanobiomaterials is still in its infancy, this article also discusses open questions and challenges that need to be addressed.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 3","pages":"Article 100079"},"PeriodicalIF":0.0,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000421/pdfft?md5=320fe996100a6e4b52edd7711af259b4&pid=1-s2.0-S2949907024000421-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141041150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical force induced activation of adhesion G protein–coupled receptor 机械力诱导激活粘附 G 蛋白偶联受体
Mechanobiology in Medicine Pub Date : 2024-05-14 DOI: 10.1016/j.mbm.2024.100078
Yueming Xu , Huanhuan Xu , Jie Yan , Gaojie Song
{"title":"Mechanical force induced activation of adhesion G protein–coupled receptor","authors":"Yueming Xu ,&nbsp;Huanhuan Xu ,&nbsp;Jie Yan ,&nbsp;Gaojie Song","doi":"10.1016/j.mbm.2024.100078","DOIUrl":"10.1016/j.mbm.2024.100078","url":null,"abstract":"<div><p>Among the various families of G protein-couple receptors (GPCR), the adhesion family of GPCRs is specialized by its expansive extracellular region, which facilitates the recruitment of various ligands. Previous hypothesis proposed that aGPCRs are activated by mechanical force, wherein a <em>Stachel</em> peptide is liberated from the GPCR autoproteolysis-inducing (GAIN) domain and subsequently binds to the transmembrane domain (7TM) upon activation. In this review, we summarize recent advancements in structural studies of aGPCRs, unveiling a conserved structural change of the <em>Stachel</em> peptide from the GAIN domain-embedded β-strand conformation to the 7TM-loaded α-helical conformation. Notably, using single-molecule studies, we directly observed the unfolding of GAIN domain and the release of <em>Stachel</em> peptide under physiological level of force, precisely supporting the mechanosensing mechanism for aGPCRs. We observed that the current complex structures of aGPCR adhesion domains with their respective ligands share a common pattern with the C-termini of each binding partner extending in opposite directions, suggesting a similar shearing stretch geometry for these aGPCRs to transmit the mechanical force generated in the circulating environment to the GAIN domain for its unfolding. Outstanding questions, including the relative orientations and interactions between 7TM and its preceding GAIN and adhesion domains of different aGPCRs, may require further structural and mechanical studies at the full-length receptor scale or cell-based level. Our analysis extends the current view of aGPCR structural organization and activation and offers valuable insights for the development of mechanosensor based on aGPCRs or discovery of mechanotherapy against aGPCRs.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 3","pages":"Article 100078"},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294990702400041X/pdfft?md5=bf52735e6165c1ef20cbbeb3f0ccd37a&pid=1-s2.0-S294990702400041X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141035304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetric crowders and membrane morphology at the nexus of intracellular trafficking and oncology 细胞内运输与肿瘤学关系中的非对称拥挤器和膜形态学
Mechanobiology in Medicine Pub Date : 2024-05-03 DOI: 10.1016/j.mbm.2024.100071
Kshitiz Parihar , Seung-Hyun B. Ko , Ryan P. Bradley , Phillip Taylor , N. Ramakrishnan , Tobias Baumgart , Wei Guo , Valerie M. Weaver , Paul A. Janmey , Ravi Radhakrishnan
{"title":"Asymmetric crowders and membrane morphology at the nexus of intracellular trafficking and oncology","authors":"Kshitiz Parihar ,&nbsp;Seung-Hyun B. Ko ,&nbsp;Ryan P. Bradley ,&nbsp;Phillip Taylor ,&nbsp;N. Ramakrishnan ,&nbsp;Tobias Baumgart ,&nbsp;Wei Guo ,&nbsp;Valerie M. Weaver ,&nbsp;Paul A. Janmey ,&nbsp;Ravi Radhakrishnan","doi":"10.1016/j.mbm.2024.100071","DOIUrl":"https://doi.org/10.1016/j.mbm.2024.100071","url":null,"abstract":"<div><p>A definitive understanding of the interplay between protein binding/migration and membrane curvature evolution is emerging but needs further study. The mechanisms defining such phenomena are critical to intracellular transport and trafficking of proteins. Among trafficking modalities, exosomes have drawn attention in cancer research as these nano-sized naturally occurring vehicles are implicated in intercellular communication in the tumor microenvironment, suppressing anti-tumor immunity and preparing the metastatic niche for progression. A significant question in the field is how the release and composition of tumor exosomes are regulated. In this perspective article, we explore how physical factors such as geometry and tissue mechanics regulate cell cortical tension to influence exosome production by co-opting the biophysics as well as the signaling dynamics of intracellular trafficking pathways and how these exosomes contribute to the suppression of anti-tumor immunity and promote metastasis. We describe a multiscale modeling approach whose impact goes beyond the fundamental investigation of specific cellular processes toward actual clinical translation. Exosomal mechanisms are critical to developing and approving liquid biopsy technologies, poised to transform future non-invasive, longitudinal profiling of evolving tumors and resistance to cancer therapies to bring us one step closer to the promise of personalized medicine.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 3","pages":"Article 100071"},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000342/pdfft?md5=82f74f64557cd0e9b08dee1c94f412b1&pid=1-s2.0-S2949907024000342-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140924556","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidic investigation for shear-stress-mediated repair of dysglycemia-induced endothelial cell damage 剪切应力介导的血糖异常内皮细胞损伤修复微流体研究
Mechanobiology in Medicine Pub Date : 2024-04-29 DOI: 10.1016/j.mbm.2024.100069
Si-Yu Hu , Chun-Dong Xue , Yong-Jiang Li , Shen Li , Zheng-Nan Gao , Kai-Rong Qin
{"title":"Microfluidic investigation for shear-stress-mediated repair of dysglycemia-induced endothelial cell damage","authors":"Si-Yu Hu ,&nbsp;Chun-Dong Xue ,&nbsp;Yong-Jiang Li ,&nbsp;Shen Li ,&nbsp;Zheng-Nan Gao ,&nbsp;Kai-Rong Qin","doi":"10.1016/j.mbm.2024.100069","DOIUrl":"https://doi.org/10.1016/j.mbm.2024.100069","url":null,"abstract":"<div><p>Dysglycemia causes arterial endothelial damage, which is an early critical event in vascular complications for diabetes patients. Physiologically, moderate shear stress (SS) helps maintain endothelial cell health and normal function. Reactive oxygen species (ROS) and calcium ions (Ca<sup>2+</sup>) signals are involved in dysglycemia-induced endothelial dysfunction and are also implicated in SS-mediated regulation of endothelial cell function. Therefore, it is urgent to establish <em>in vitro</em> models for studying endothelial biomechanics and mechanobiology, aiming to seek interventions that utilize appropriate SS to delay or reverse endothelial dysfunction. Microfluidic technology, as a novel approach, makes it possible to replicate blood glucose environment and accurate pulsatile SS <em>in vitro</em>. Here, we reviewed the progress of microfluidic systems used for SS-mediated repair of dysglycemia-induced endothelial cell damage (ECD), revealing the crucial roles of ROS and Ca<sup>2+</sup> during the processes. It holds significant implications for finding appropriate mechanical intervention methods, such as exercise training, to prevent and treat cardiovascular complications in diabetes.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 3","pages":"Article 100069"},"PeriodicalIF":0.0,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000329/pdfft?md5=a518abb78cf0a5c00975a90358021bba&pid=1-s2.0-S2949907024000329-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable and oscillatory hypoxia differentially regulate invasibility of breast cancer associated fibroblasts 稳定型和振荡型缺氧可对乳腺癌相关成纤维细胞的侵袭性进行不同程度的调控
Mechanobiology in Medicine Pub Date : 2024-04-27 DOI: 10.1016/j.mbm.2024.100070
Wenqiang Du , Ashkan Novin , Yamin Liu , Junaid Afzal , Shaofei Liu , Yasir Suhail , Kshitiz
{"title":"Stable and oscillatory hypoxia differentially regulate invasibility of breast cancer associated fibroblasts","authors":"Wenqiang Du ,&nbsp;Ashkan Novin ,&nbsp;Yamin Liu ,&nbsp;Junaid Afzal ,&nbsp;Shaofei Liu ,&nbsp;Yasir Suhail ,&nbsp;Kshitiz","doi":"10.1016/j.mbm.2024.100070","DOIUrl":"https://doi.org/10.1016/j.mbm.2024.100070","url":null,"abstract":"<div><p>As local regions in the tumor outstrip their oxygen supply, hypoxia can develop, affecting not only the cancer cells, but also other cells in the microenvironment, including cancer associated fibroblasts (CAFs). Hypoxia is also not necessarily stable over time, and can fluctuate or oscillate. Hypoxia Inducible Factor-1 is the master regulator of cellular response to hypoxia, and can also exhibit oscillations in its activity. To understand how stable, and fluctuating hypoxia influence breast CAFs, we measured changes in gene expression in CAFs in normoxia, hypoxia, and oscillatory hypoxia, as well as measured change in their capacity to resist, or assist breast cancer invasion. We show that hypoxia has a profound effect on breast CAFs causing activation of key pathways associated with fibroblast activation, but reduce myofibroblast activation and traction force generation. We also found that oscillatory hypoxia, while expectedly resulted in a “sub-hypoxic” response in gene expression, it resulted in specific activation of pathways associated with actin polymerization and actomyosin maturation. Using traction force microscopy, and a nanopatterned stromal invasion assay, we show that oscillatory hypoxia increases contractile force generation vs stable hypoxia, and increases heterogeneity in force generation response, while also additively enhancing invasibility of CAFs to MDA-MB-231 invasion. Our data show that stable and unstable hypoxia can regulate many mechnobiological characteristics of CAFs, and can contribute to transformation of CAFs to assist cancer dissemination and onset of metastasis.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"2 3","pages":"Article 100070"},"PeriodicalIF":0.0,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000330/pdfft?md5=3b091afca74e4a263697c398a9097d07&pid=1-s2.0-S2949907024000330-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140950603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信