Toward a clear relationship between mechanical signals and bone adaptation

Chenlu Wang, Ruisen Fu, Haisheng Yang
{"title":"Toward a clear relationship between mechanical signals and bone adaptation","authors":"Chenlu Wang,&nbsp;Ruisen Fu,&nbsp;Haisheng Yang","doi":"10.1016/j.mbm.2025.100115","DOIUrl":null,"url":null,"abstract":"<div><div>Bone adapts according to the mechanical environment, and this adaptation can be visualized by altering its shape, size, and microarchitecture. Bone adaptation was recognized more than a century ago, with a description presented in <em>The Law of Bone Remodeling</em>. Furthermore, the conceptual model of “<em>The Mechanostat</em>” provides a quantitative relationship between the magnitude of bone tissue deformation (strain) and bone adaptive responses. However, upon maintaining a constant strain magnitude, various bone responses were observed experimentally under different loading parameters (e.g., frequency, rate, number of load cycles, rest insertion, and waveform). Nevertheless, the precise relationship between mechanical signals and bone adaptation remains unclear. Accordingly, we reviewed <em>in vivo</em> loading studies to determine the quantitative relationships between various mechanical signals and bone adaptive responses in various animal loading models. Additionally, we explored how these relationships are influenced by pathophysiological factors, such as age, sex, and estrogen deficiency. Moreover, mechanistic studies that consider cellular mechanical microenvironments to explain these quantitative relationships are discussed. A general formula that considers the bone adaptive response as a function of different loading parameters was proposed. This review may enhance our understanding of bone adaptation and offer guidance for clinicians to develop effective mechanotherapies to prevent bone loss.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 1","pages":"Article 100115"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907025000038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bone adapts according to the mechanical environment, and this adaptation can be visualized by altering its shape, size, and microarchitecture. Bone adaptation was recognized more than a century ago, with a description presented in The Law of Bone Remodeling. Furthermore, the conceptual model of “The Mechanostat” provides a quantitative relationship between the magnitude of bone tissue deformation (strain) and bone adaptive responses. However, upon maintaining a constant strain magnitude, various bone responses were observed experimentally under different loading parameters (e.g., frequency, rate, number of load cycles, rest insertion, and waveform). Nevertheless, the precise relationship between mechanical signals and bone adaptation remains unclear. Accordingly, we reviewed in vivo loading studies to determine the quantitative relationships between various mechanical signals and bone adaptive responses in various animal loading models. Additionally, we explored how these relationships are influenced by pathophysiological factors, such as age, sex, and estrogen deficiency. Moreover, mechanistic studies that consider cellular mechanical microenvironments to explain these quantitative relationships are discussed. A general formula that considers the bone adaptive response as a function of different loading parameters was proposed. This review may enhance our understanding of bone adaptation and offer guidance for clinicians to develop effective mechanotherapies to prevent bone loss.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信