Wei Liao , Yuxi Huang , Xiangxiu Wang , Ziqiu Hu , Chuanrong Zhao , Guixue Wang
{"title":"Multidimensional excavation of the current status and trends of mechanobiology in cardiovascular homeostasis and remodeling within 20 years","authors":"Wei Liao , Yuxi Huang , Xiangxiu Wang , Ziqiu Hu , Chuanrong Zhao , Guixue Wang","doi":"10.1016/j.mbm.2025.100127","DOIUrl":null,"url":null,"abstract":"<div><div>Mechanobiology is essential for cardiovascular structure and function and regulates the normal physiological and pathological processes of the cardiovascular system. Cells in the cardiovascular system are extremely sensitive to their mechanical environment, and once mechanical stimulation is abnormal, the homeostasis mechanism is damaged or lost, leading to the occurrence of pathological remodeling diseases. In the past 20 years, many articles concerning the mechanobiology of cardiovascular homeostasis and remodeling have been published. To better understand the current development status, research hotspots and future development trends in the field, this paper uses CiteSpace software for bibliometric analysis, quantifies and visualizes the articles published in this field in the past 20 years, and reviews the research hotspots and emerging trends. The regulatory effects of mechanical stimulation on the biological behavior of endothelial cells, smooth muscle cells and the extracellular matrix, as well as the mechanical-related remodeling mechanism in heart failure, have always been research hotspots in this field. This paper reviews the research advances of these research hotspots in detail. This paper also introduces the research status of emerging hotspots, such as those related to cardiac fibrosis, homeostasis, mechanosensitive transcription factors and mechanosensitive ion channels. We hope to provide a systematic framework and new ideas for follow-up research on mechanobiology in the field of cardiovascular homeostasis and remodeling and promote the discovery of more therapeutic targets and novel markers of mechanobiology in the cardiovascular system.</div></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":"3 2","pages":"Article 100127"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907025000154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Mechanobiology is essential for cardiovascular structure and function and regulates the normal physiological and pathological processes of the cardiovascular system. Cells in the cardiovascular system are extremely sensitive to their mechanical environment, and once mechanical stimulation is abnormal, the homeostasis mechanism is damaged or lost, leading to the occurrence of pathological remodeling diseases. In the past 20 years, many articles concerning the mechanobiology of cardiovascular homeostasis and remodeling have been published. To better understand the current development status, research hotspots and future development trends in the field, this paper uses CiteSpace software for bibliometric analysis, quantifies and visualizes the articles published in this field in the past 20 years, and reviews the research hotspots and emerging trends. The regulatory effects of mechanical stimulation on the biological behavior of endothelial cells, smooth muscle cells and the extracellular matrix, as well as the mechanical-related remodeling mechanism in heart failure, have always been research hotspots in this field. This paper reviews the research advances of these research hotspots in detail. This paper also introduces the research status of emerging hotspots, such as those related to cardiac fibrosis, homeostasis, mechanosensitive transcription factors and mechanosensitive ion channels. We hope to provide a systematic framework and new ideas for follow-up research on mechanobiology in the field of cardiovascular homeostasis and remodeling and promote the discovery of more therapeutic targets and novel markers of mechanobiology in the cardiovascular system.