IEEE Transactions on Materials for Electron Devices最新文献

筛选
英文 中文
Spray Coated GNP-PDMS Flexible Patch Antenna-Sensor for Wireless Wearable Applications
IEEE Transactions on Materials for Electron Devices Pub Date : 2025-02-06 DOI: 10.1109/TMAT.2025.3539249
Atul Kumar Sharma;Anup Kumar Sharma;Ritu Sharma;Puneet Sharma;Mamta Devi Sharma
{"title":"Spray Coated GNP-PDMS Flexible Patch Antenna-Sensor for Wireless Wearable Applications","authors":"Atul Kumar Sharma;Anup Kumar Sharma;Ritu Sharma;Puneet Sharma;Mamta Devi Sharma","doi":"10.1109/TMAT.2025.3539249","DOIUrl":"https://doi.org/10.1109/TMAT.2025.3539249","url":null,"abstract":"This paper presents the synthesis and performance of a novel flexible patch antenna sensor based on graphene nanoplatelets (GNP) material designed to operate at the 5.8 GHz frequency, targeting wearable applications. The fabrication process employed in this chapter involved a simple yet effective spray coating method, utilizing a GNP dispersion applied with a spray gun to form a rectangular patch with a full ground plane on the PDMS substrate. This method offers the advantages of being cost-effective and scalable, making it suitable for large-scale production. The antenna's performance as a sensor was evaluated by subjecting it to different bending scenarios, mimicking both compressive (positive bending) and tensile (negative bending) strains. The resulting shifts in resonant frequency under these conditions offered important information about the sensor's sensitivity. The practical applicability of the antenna sensor was demonstrated through human limb motion detection experiments, specifically tracking wrist movements. The sensor's ability to detect upward and downward wrist motions through variations in the normalized frequency output highlights its potential for real-world wearable applications. In addition to its promising performance, the operation of this antenna within the Industrial/Scientific/Medical (ISM) band at 5.8 GHz opens up a range of potential applications.","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"2 ","pages":"1-8"},"PeriodicalIF":0.0,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143512794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for Nominations for Editor-in-Chief: IEEE Transactions on Semiconductor Manufacturing
IEEE Transactions on Materials for Electron Devices Pub Date : 2025-02-03 DOI: 10.1109/TMAT.2025.3535909
{"title":"Call for Nominations for Editor-in-Chief: IEEE Transactions on Semiconductor Manufacturing","authors":"","doi":"10.1109/TMAT.2025.3535909","DOIUrl":"https://doi.org/10.1109/TMAT.2025.3535909","url":null,"abstract":"","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"2 ","pages":"C3-C3"},"PeriodicalIF":0.0,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10869512","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143105656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wide Band Gap Semiconductors for Automotive Applications Call for Papers 汽车用宽频带隙半导体征文
IEEE Transactions on Materials for Electron Devices Pub Date : 2025-01-17 DOI: 10.1109/TMAT.2025.3529277
{"title":"Wide Band Gap Semiconductors for Automotive Applications Call for Papers","authors":"","doi":"10.1109/TMAT.2025.3529277","DOIUrl":"https://doi.org/10.1109/TMAT.2025.3529277","url":null,"abstract":"","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"2 ","pages":"C3-C3"},"PeriodicalIF":0.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10844544","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Call for Papers: Special Issue on Exploration of the Exciting World of Multifunctional Oxide-Based Electronic Devices: From Material to System-Level Applications 论文征集:探索多功能氧化物基电子器件的激动人心的世界特刊:从材料到系统级应用
IEEE Transactions on Materials for Electron Devices Pub Date : 2025-01-17 DOI: 10.1109/TMAT.2025.3529352
{"title":"Call for Papers: Special Issue on Exploration of the Exciting World of Multifunctional Oxide-Based Electronic Devices: From Material to System-Level Applications","authors":"","doi":"10.1109/TMAT.2025.3529352","DOIUrl":"https://doi.org/10.1109/TMAT.2025.3529352","url":null,"abstract":"","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"2 ","pages":"C3-C3"},"PeriodicalIF":0.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10844545","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993021","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Announcing an IEEE/Optica Publishing Group Journal of Lightwave Technology Special Issue on: 宣布IEEE/Optica出版集团光波技术杂志特刊:
IEEE Transactions on Materials for Electron Devices Pub Date : 2025-01-17 DOI: 10.1109/TMAT.2025.3529353
{"title":"Announcing an IEEE/Optica Publishing Group Journal of Lightwave Technology Special Issue on:","authors":"","doi":"10.1109/TMAT.2025.3529353","DOIUrl":"https://doi.org/10.1109/TMAT.2025.3529353","url":null,"abstract":"","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"2 ","pages":"C3-C3"},"PeriodicalIF":0.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10844543","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142993023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2024 Index IEEE Transactions on Materials for Electron Devices Vol. 1 电子器件材料学报第1卷
IEEE Transactions on Materials for Electron Devices Pub Date : 2025-01-14 DOI: 10.1109/TMAT.2025.3529194
{"title":"2024 Index IEEE Transactions on Materials for Electron Devices Vol. 1","authors":"","doi":"10.1109/TMAT.2025.3529194","DOIUrl":"https://doi.org/10.1109/TMAT.2025.3529194","url":null,"abstract":"","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"1 ","pages":"222-229"},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10841915","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142976040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Framework for Exploring Gate-Dielectric Materials for High-Performance Two-Dimensional Field-Effect-Transistors 高性能二维场效应晶体管栅极介电材料的研究框架
IEEE Transactions on Materials for Electron Devices Pub Date : 2024-12-09 DOI: 10.1109/TMAT.2024.3513236
Ankit Kumar;Lin Xu;Albert Ho;Arnab Pal;Kunjesh Agashiwala;Kamyar Parto;Wei Cao;Kaustav Banerjee
{"title":"A Framework for Exploring Gate-Dielectric Materials for High-Performance Two-Dimensional Field-Effect-Transistors","authors":"Ankit Kumar;Lin Xu;Albert Ho;Arnab Pal;Kunjesh Agashiwala;Kamyar Parto;Wei Cao;Kaustav Banerjee","doi":"10.1109/TMAT.2024.3513236","DOIUrl":"https://doi.org/10.1109/TMAT.2024.3513236","url":null,"abstract":"The choice and engineering of the gate-dielectric (GD) is of paramount importance to the performance and energy-efficiency of two-dimensional (2D) field-effect-transistors (FETs) that are considered to be primary candidates for sub-10 nm gate length (L\u0000<sub>g</sub>\u0000) metal-oxide-semiconductor FETs (MOSFETs). Despite remarkable progress achieved in recent years by the semiconductor-industry towards realization of high-performance 2D FETs based on transition-metal dichalcogenides (TMDs), achieving fast switching speeds and low device leakage currents remain an open challenge. More specifically, the effect of traps at the dielectric-2D interface and bulk defects in the dielectric on device performance have not been thoroughly investigated. In this paper, taking a common 2D-TMD material molybdenum disulfide (MoS\u0000<sub>2</sub>\u0000) as an example, we explore various GDs and dielectric-stacks – their interfaces, traps and defects, by using rigorous ab-initio density-functional-theory (DFT) and non-equilibrium-Green's-function (NEGF) transport. Our framework and analysis provide valuable insights into the design of n-type 2D MoS\u0000<sub>2</sub>\u0000 FETs, including their gate leakage (I\u0000<sub>GL</sub>\u0000), subthreshold swing (SS), and ON-current (I\u0000<sub>ON</sub>\u0000), and they can be extended to optimize the design and performance of other 2D FETs. More specifically, we demonstrate that monolayer (1L-) and bilayer (2L-) LaOCl/HfO\u0000<sub>2</sub>\u0000 are promising GD stacks to achieve IRDS required values for I\u0000<sub>GL</sub>\u0000, SS, and I\u0000<sub>ON</sub>\u0000 in n-type 2D FETs. Finally, we develop a framework to derive the design-window in terms of material/interface properties valid for both n-type and p-type 2D FETs and identify potential GD materials as a passivation/seeding layer across different L\u0000<sub>g</sub>\u0000 for n-type 2D FETs. The results highlight LaOCl as a promising candidate for L\u0000<sub>g</sub>\u0000 = 7 nm while several materials, including LaOCl and \u0000<italic>h</i>\u0000BN, are viable for L\u0000<sub>g</sub>\u0000 = 10 nm.","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"1 ","pages":"211-220"},"PeriodicalIF":0.0,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142912585","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IEEE Electron Devices Society Information IEEE电子器件协会信息
IEEE Transactions on Materials for Electron Devices Pub Date : 2024-12-03 DOI: 10.1109/TMAT.2024.3469608
{"title":"IEEE Electron Devices Society Information","authors":"","doi":"10.1109/TMAT.2024.3469608","DOIUrl":"https://doi.org/10.1109/TMAT.2024.3469608","url":null,"abstract":"","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"1 ","pages":"C2-C2"},"PeriodicalIF":0.0,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10772478","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142761429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial An Era of Surfaces 社论 一个表面的时代
IEEE Transactions on Materials for Electron Devices Pub Date : 2024-11-25 DOI: 10.1109/TMAT.2024.3486974
FRANCESCA IACOPI
{"title":"Editorial An Era of Surfaces","authors":"FRANCESCA IACOPI","doi":"10.1109/TMAT.2024.3486974","DOIUrl":"https://doi.org/10.1109/TMAT.2024.3486974","url":null,"abstract":"","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"1 ","pages":"iii-iv"},"PeriodicalIF":0.0,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10766942","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142713868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optoelectrical Dynamic of Perovskite Solar Cells Under Perovskite and Electron Transport Layer Crystallinity Effect 钙钛矿和电子传输层结晶度效应下钙钛矿太阳能电池的光电动力学
IEEE Transactions on Materials for Electron Devices Pub Date : 2024-11-18 DOI: 10.1109/TMAT.2024.3501212
Akrajas Ali Umar;P. Susthita Menon
{"title":"Optoelectrical Dynamic of Perovskite Solar Cells Under Perovskite and Electron Transport Layer Crystallinity Effect","authors":"Akrajas Ali Umar;P. Susthita Menon","doi":"10.1109/TMAT.2024.3501212","DOIUrl":"https://doi.org/10.1109/TMAT.2024.3501212","url":null,"abstract":"This paper discusses a specific case regarding how the behavior of the perovskite lattice and the crystallinity properties of the electron transport layer (ETL) impact the photoelectrical dynamics in perovskite solar cells (PSCs). While many factors influence this photovoltaic process, including the properties of the perovskite layer, ETL, hole transport layer (HTL), and the interfacial properties between these components, the fundamental phenomena occurring within each layer are quite similar. By examining the properties of the perovskite layer and ETL, we can gain valuable insights into how they collectively influence the transport of photogenerated carriers in PSCs. This brief review aims to shed light on these key aspects, thus catalyzing efforts to enhance the performance of perovskite solar cells. Understanding the underlying dynamics at play will enable researchers to devise more targeted strategies to optimize PSCs, ultimately realizing their full potential in renewable energy applications.","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"1 ","pages":"194-210"},"PeriodicalIF":0.0,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142810265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信