Al2O3/硼硅酸盐玻璃低温共烧陶瓷基板的还原光聚合及集成微孔图图化装置

Yizhen Chu;Yujuan Zhou;Mingyong Jia;Qianshun Cui;Haiyuan Shi;Zhifeng Huang;Fei Chen
{"title":"Al2O3/硼硅酸盐玻璃低温共烧陶瓷基板的还原光聚合及集成微孔图图化装置","authors":"Yizhen Chu;Yujuan Zhou;Mingyong Jia;Qianshun Cui;Haiyuan Shi;Zhifeng Huang;Fei Chen","doi":"10.1109/TMAT.2025.3598753","DOIUrl":null,"url":null,"abstract":"Low temperature co-fired ceramics (LTCC) have garnered significant attention due to their exceptional electrical and thermal properties. While the traditional tape casting method for preparing LTCC substrates yields high density, it is constrained by limited geometric freedom and a complex process, making it less suitable for contemporary demands. In this study, we employ vat photopolymerization 3D printing technology to fabricate alumina/borosilicate glass composite LTCC systems and introduce a microporous structure design on the substrate. This innovation simplifies the traditional punching step, enhancing both productivity and reliability. We formulated LTCC slurry suitable for vat photopolymerization and examined the thermal conductivity and dielectric properties of the sintered parts. The findings reveal that samples held at 750 °C for 30 minutes achieved the highest densities, exhibiting a thermal conductivity of 3.63 W·m<sup>−1</sup>·K<sup>−1</sup>, a relative dielectric constant of 13.09, and the lowest dielectric loss (7.9 × 10<sup>−3</sup>). We successfully realized microporous printing on LTCC substrates, achieving microporous structures with an actual diameter of 132 μm. Additionally, we verified the compatibility of substrates with silver co-firing, observing a robust bond between the silver layer and the LTCC layer. This study underscores the potential of vat photopolymerization for LTCC applications.","PeriodicalId":100642,"journal":{"name":"IEEE Transactions on Materials for Electron Devices","volume":"2 ","pages":"95-102"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Vat Photopolymerization of Al2O3/Borosilicate Glass Low Temperature Co-Fired Ceramic Substrates With Integrated Micropore Patterning Device\",\"authors\":\"Yizhen Chu;Yujuan Zhou;Mingyong Jia;Qianshun Cui;Haiyuan Shi;Zhifeng Huang;Fei Chen\",\"doi\":\"10.1109/TMAT.2025.3598753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low temperature co-fired ceramics (LTCC) have garnered significant attention due to their exceptional electrical and thermal properties. While the traditional tape casting method for preparing LTCC substrates yields high density, it is constrained by limited geometric freedom and a complex process, making it less suitable for contemporary demands. In this study, we employ vat photopolymerization 3D printing technology to fabricate alumina/borosilicate glass composite LTCC systems and introduce a microporous structure design on the substrate. This innovation simplifies the traditional punching step, enhancing both productivity and reliability. We formulated LTCC slurry suitable for vat photopolymerization and examined the thermal conductivity and dielectric properties of the sintered parts. The findings reveal that samples held at 750 °C for 30 minutes achieved the highest densities, exhibiting a thermal conductivity of 3.63 W·m<sup>−1</sup>·K<sup>−1</sup>, a relative dielectric constant of 13.09, and the lowest dielectric loss (7.9 × 10<sup>−3</sup>). We successfully realized microporous printing on LTCC substrates, achieving microporous structures with an actual diameter of 132 μm. Additionally, we verified the compatibility of substrates with silver co-firing, observing a robust bond between the silver layer and the LTCC layer. This study underscores the potential of vat photopolymerization for LTCC applications.\",\"PeriodicalId\":100642,\"journal\":{\"name\":\"IEEE Transactions on Materials for Electron Devices\",\"volume\":\"2 \",\"pages\":\"95-102\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Materials for Electron Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11124414/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Materials for Electron Devices","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/11124414/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

低温共烧陶瓷(LTCC)由于其优异的电学和热学性能而引起了人们的极大关注。虽然用于制备LTCC基板的传统带铸造方法产生高密度,但它受到有限的几何自由度和复杂工艺的限制,使其不太适合当代需求。在本研究中,我们采用还原光聚合3D打印技术制造氧化铝/硼硅酸盐玻璃复合材料LTCC系统,并在基板上引入微孔结构设计。这种创新简化了传统的冲孔步骤,提高了生产率和可靠性。配制了适合于还原光聚合的LTCC浆料,并对烧结件的导热性能和介电性能进行了测试。结果表明,在750°C下保温30分钟的样品密度最高,导热系数为3.63 W·m−1·K−1,相对介电常数为13.09,介电损耗最低(7.9 × 10−3)。我们成功地在LTCC基板上实现了微孔印刷,实现了实际直径为132 μm的微孔结构。此外,我们验证了衬底与银共烧的相容性,观察到银层和LTCC层之间的牢固结合。这项研究强调了还原光聚合在LTCC应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vat Photopolymerization of Al2O3/Borosilicate Glass Low Temperature Co-Fired Ceramic Substrates With Integrated Micropore Patterning Device
Low temperature co-fired ceramics (LTCC) have garnered significant attention due to their exceptional electrical and thermal properties. While the traditional tape casting method for preparing LTCC substrates yields high density, it is constrained by limited geometric freedom and a complex process, making it less suitable for contemporary demands. In this study, we employ vat photopolymerization 3D printing technology to fabricate alumina/borosilicate glass composite LTCC systems and introduce a microporous structure design on the substrate. This innovation simplifies the traditional punching step, enhancing both productivity and reliability. We formulated LTCC slurry suitable for vat photopolymerization and examined the thermal conductivity and dielectric properties of the sintered parts. The findings reveal that samples held at 750 °C for 30 minutes achieved the highest densities, exhibiting a thermal conductivity of 3.63 W·m−1·K−1, a relative dielectric constant of 13.09, and the lowest dielectric loss (7.9 × 10−3). We successfully realized microporous printing on LTCC substrates, achieving microporous structures with an actual diameter of 132 μm. Additionally, we verified the compatibility of substrates with silver co-firing, observing a robust bond between the silver layer and the LTCC layer. This study underscores the potential of vat photopolymerization for LTCC applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信