Cell Regeneration最新文献

筛选
英文 中文
Preserving blood-retinal barrier integrity: a path to retinal ganglion cell protection in glaucoma and traumatic optic neuropathy.
IF 4
Cell Regeneration Pub Date : 2025-04-02 DOI: 10.1186/s13619-025-00228-y
Lai-Yang Zhou, Zhen-Gang Liu, Yong-Quan Sun, Yan-Zhong Li, Zhao-Qian Teng, Chang-Mei Liu
{"title":"Preserving blood-retinal barrier integrity: a path to retinal ganglion cell protection in glaucoma and traumatic optic neuropathy.","authors":"Lai-Yang Zhou, Zhen-Gang Liu, Yong-Quan Sun, Yan-Zhong Li, Zhao-Qian Teng, Chang-Mei Liu","doi":"10.1186/s13619-025-00228-y","DOIUrl":"10.1186/s13619-025-00228-y","url":null,"abstract":"<p><p>Retinal ganglion cells (RGCs) are the visual gateway of the brain, with their axons converging to form the optic nerve, making them the most vulnerable target in diseases such as glaucoma and traumatic optic neuropathy (TON). In both diseases, the disruption of the blood-retinal barrier(BRB) is considered an important mechanism that accelerates RGC degeneration and hinders axon regeneration. The BRB consists of the inner blood-retinal barrier (iBRB) and the outer blood-retinal barrier (oBRB), which are maintained by endothelial cells(ECs), pericytes(PCs), and retinal pigment epithelial (RPE), respectively. Their functions include regulating nutrient exchange, oxidative stress, and the immune microenvironment. However, in glaucoma and TON, the structural and functional integrity of the BRB is severely damaged due to mechanical stress, inflammatory reactions, and metabolic disorders. Emerging evidence highlights that BRB disruption leads to heightened vascular permeability, immune cell infiltration, and sustained chronic inflammation, creating a hostile microenvironment for RGC survival. Furthermore, the dynamic interplay and imbalance among ECs, PCs, and glial cells within the neurovascular unit (NVU) are pivotal drivers of BRB destruction, exacerbating RGC apoptosis and limiting optic nerve regeneration. The intricate molecular and cellular mechanisms underlying these processes underscore the BRB's critical role in glaucoma and TON pathophysiology while offering a compelling foundation for therapeutic strategies targeting BRB repair and stabilization. This review provides crucial insights and lays a robust groundwork for advancing research on neural regeneration and innovative optic nerve protective strategies.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"13"},"PeriodicalIF":4.0,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11965071/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143763192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell reprogramming: methods, mechanisms and applications.
IF 4
Cell Regeneration Pub Date : 2025-03-27 DOI: 10.1186/s13619-025-00229-x
Fei Zhu, Guangjun Nie
{"title":"Cell reprogramming: methods, mechanisms and applications.","authors":"Fei Zhu, Guangjun Nie","doi":"10.1186/s13619-025-00229-x","DOIUrl":"10.1186/s13619-025-00229-x","url":null,"abstract":"<p><p>Cell reprogramming represents a powerful approach to achieve the conversion cells of one type into cells of another type of interest, which has substantially changed the landscape in the field of developmental biology, regenerative medicine, disease modeling, drug discovery and cancer immunotherapy. Cell reprogramming is a complex and ordered process that involves the coordination of transcriptional, epigenetic, translational and metabolic changes. Over the past two decades, a range of questions regarding the facilitators/barriers, the trajectories, and the mechanisms of cell reprogramming have been extensively investigated. This review summarizes the recent advances in cell reprogramming mediated by transcription factors or chemical molecules, followed by elaborating on the important roles of biophysical cues in cell reprogramming. Additionally, this review will detail our current understanding of the mechanisms that govern cell reprogramming, including the involvement of the recently discovered biomolecular condensates. Finally, the review discusses the broad applications and future directions of cell reprogramming in developmental biology, disease modeling, drug development, regenerative/rejuvenation therapy, and cancer immunotherapy.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"12"},"PeriodicalIF":4.0,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11947411/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143718106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long noncoding RNA as an emerging regulator of endoderm differentiation: progress and perspectives.
IF 4
Cell Regeneration Pub Date : 2025-03-26 DOI: 10.1186/s13619-025-00230-4
Jie Yang, Donghui Zhang, Wei Jiang
{"title":"Long noncoding RNA as an emerging regulator of endoderm differentiation: progress and perspectives.","authors":"Jie Yang, Donghui Zhang, Wei Jiang","doi":"10.1186/s13619-025-00230-4","DOIUrl":"10.1186/s13619-025-00230-4","url":null,"abstract":"<p><p>Accumulated studies have demonstrated that long noncoding RNAs (lncRNAs) play crucial regulatory roles in diverse biological processes, such as embryonic development and cell differentiation. Comprehensive transcriptome analysis identifies extensive lncRNAs, gradually elucidating their functions across various contexts. Recent studies have highlighted the essential role of lncRNAs in definitive endoderm differentiation, underscoring their importance in early development. In this review, we have analyzed the features of overlapping, proximal, and desert lncRNAs, classified by genomic location, in pluripotent stem cells (PSCs) and the differentiation derivatives. Furthermore, we focus on the endoderm lineage and review the latest advancements in lncRNA identification and their distinct regulatory mechanisms. By consolidating current knowledge, we aim to provide a clearer perspective on how lncRNAs contribute to endoderm differentiation in different manners.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"11"},"PeriodicalIF":4.0,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11937447/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143708865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Standard: human liver-on-a-chip.
IF 4
Cell Regeneration Pub Date : 2025-03-24 DOI: 10.1186/s13619-025-00226-0
Haitao Liu, Xu Zhang, Yaqing Wang, Min Zhang, Peng Wang, Jing Shang, Zhongqiang Li, Likun Gong, Xin Xie, Dongyang Liu, Jingbo Pi, Xinghua Gao, Xianliang Li, Wei Ding, Dianbing Wang, Yun Long, Lan Wang, Song Li, Xingchao Geng, Pingkun Zhou, Wanjin Tang, Xian'en Zhang, Chunying Chen, Shengli Yang, Jianhua Qin
{"title":"Standard: human liver-on-a-chip.","authors":"Haitao Liu, Xu Zhang, Yaqing Wang, Min Zhang, Peng Wang, Jing Shang, Zhongqiang Li, Likun Gong, Xin Xie, Dongyang Liu, Jingbo Pi, Xinghua Gao, Xianliang Li, Wei Ding, Dianbing Wang, Yun Long, Lan Wang, Song Li, Xingchao Geng, Pingkun Zhou, Wanjin Tang, Xian'en Zhang, Chunying Chen, Shengli Yang, Jianhua Qin","doi":"10.1186/s13619-025-00226-0","DOIUrl":"10.1186/s13619-025-00226-0","url":null,"abstract":"<p><p>Organs-on-chips are microphysiological systems designed to replicate key functions of human organs, thereby accelerating innovation in life sciences, such as disease modeling, drug development, and precision medicine. However, the lack of standardized definitions, structural designs, cell sources, model constructions, and functional validations has posed challenges to their widespread translational applications. On April 29, 2024, the Chinese Society of Biotechnology introduced \"Organs-on-chips: Liver\", China's first group standard for human liver-on-a-chip technology. This pioneering standard provides comprehensive guidelines, including scope, terminology, definitions, technical requirements, detection methods, and quality control measures for developing liver models on chips. The introduction of this standard is set to facilitate the establishment of institutional protocols, promote widespread adoption, and drive the international standardization of liver-on-a-chip technologies.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"9"},"PeriodicalIF":4.0,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11930896/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dissecting endothelial cell heterogeneity with new tools.
IF 4
Cell Regeneration Pub Date : 2025-03-23 DOI: 10.1186/s13619-025-00223-3
Jing Zhong, Rong-Rong Gao, Xin Zhang, Jia-Xin Yang, Yang Liu, Jinjin Ma, Qi Chen
{"title":"Dissecting endothelial cell heterogeneity with new tools.","authors":"Jing Zhong, Rong-Rong Gao, Xin Zhang, Jia-Xin Yang, Yang Liu, Jinjin Ma, Qi Chen","doi":"10.1186/s13619-025-00223-3","DOIUrl":"10.1186/s13619-025-00223-3","url":null,"abstract":"<p><p>The formation of a blood vessel network is crucial for organ development and regeneration. Over the past three decades, the central molecular mechanisms governing blood vessel growth have been extensively studied. Recent evidence indicates that vascular endothelial cells-the specialized cells lining the inner surface of blood vessels-exhibit significant heterogeneity to meet the specific needs of different organs. This review focuses on the current understanding of endothelial cell heterogeneity, which includes both intra-organ and inter-organ heterogeneity. Intra-organ heterogeneity encompasses arterio-venous and tip-stalk endothelial cell specialization, while inter-organ heterogeneity refers to organ-specific transcriptomic profiles and functions. Advances in single-cell RNA sequencing (scRNA-seq) have enabled the identification of new endothelial subpopulations and the comparison of gene expression patterns across different subsets of endothelial cells. Integrating scRNA-seq with other high-throughput sequencing technologies promises to deepen our understanding of endothelial cell heterogeneity at the epigenetic level and in a spatially resolved context. To further explore human endothelial cell heterogeneity, vascular organoids offer powerful tools for studying gene function in three-dimensional culture systems and for investigating endothelial-tissue interactions using human cells. Developing organ-specific vascular organoids presents unique opportunities to unravel inter-organ endothelial cell heterogeneity and its implications for human disease. Emerging technologies, such as scRNA-seq and vascular organoids, are poised to transform our understanding of endothelial cell heterogeneity and pave the way for innovative therapeutic strategies to address human vascular diseases.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"10"},"PeriodicalIF":4.0,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143691286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Revolutionizing bone healing: the role of 3D models.
IF 4
Cell Regeneration Pub Date : 2025-03-21 DOI: 10.1186/s13619-025-00225-1
Raffaella De Pace, Maria Rosa Iaquinta, Assia Benkhalqui, Antonio D'Agostino, Lorenzo Trevisiol, Riccardo Nocini, Chiara Mazziotta, John Charles Rotondo, Ilaria Bononi, Mauro Tognon, Fernanda Martini, Elisa Mazzoni
{"title":"Revolutionizing bone healing: the role of 3D models.","authors":"Raffaella De Pace, Maria Rosa Iaquinta, Assia Benkhalqui, Antonio D'Agostino, Lorenzo Trevisiol, Riccardo Nocini, Chiara Mazziotta, John Charles Rotondo, Ilaria Bononi, Mauro Tognon, Fernanda Martini, Elisa Mazzoni","doi":"10.1186/s13619-025-00225-1","DOIUrl":"10.1186/s13619-025-00225-1","url":null,"abstract":"<p><p>The increasing incidence of bone diseases has driven research towards Bone Tissue Engineering (BTE), an innovative discipline that uses biomaterials to develop three-dimensional (3D) scaffolds capable of mimicking the natural environment of bone tissue. Traditional approaches relying on two-dimensional (2D) models have exhibited significant limitations in simulating cellular interactions and the complexity of the bone microenvironment. In response to these challenges, 3D models such as organoids and cellular spheroids have emerged as effective tools for studying bone regeneration. Adult mesenchymal stem cells have proven crucial in this context, as they can differentiate into osteoblasts and contribute to bone tissue repair. Furthermore, the integration of composite biomaterials has shown substantial potential in enhancing bone healing. Advanced technologies like microfluidics offer additional opportunities to create controlled environments for cell culture, facilitating more detailed studies on bone regeneration. These advancements represent a fundamental step forward in the treatment of bone pathologies and the promotion of skeletal health. In this review, we report on the evolution of in vitro culture models applied to the study of bone healing/regrowth, starting from 2 to 3D cultures and microfluids. The different methodologies of in vitro model generation, cells and biomaterials are presented and discussed.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"7"},"PeriodicalIF":4.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926310/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Human induced pluripotent stem cells derived neutrophils display strong anti-microbial potencies. 人类诱导多能干细胞衍生的中性粒细胞具有很强的抗微生物能力。
IF 4
Cell Regeneration Pub Date : 2025-03-21 DOI: 10.1186/s13619-025-00227-z
Xing Hu, Baoqiang Kang, Mingquan Wang, Huaisong Lin, Zhiyong Liu, Zhishuai Zhang, Jiaming Gu, Yuchan Mai, Xinrui Guo, Wanli Ma, Han Yan, Shuoting Wang, Jingxi Huang, Junwei Wang, Jian Zhang, Tianyu Zhang, Bo Feng, Yanling Zhu, Guangjin Pan
{"title":"Human induced pluripotent stem cells derived neutrophils display strong anti-microbial potencies.","authors":"Xing Hu, Baoqiang Kang, Mingquan Wang, Huaisong Lin, Zhiyong Liu, Zhishuai Zhang, Jiaming Gu, Yuchan Mai, Xinrui Guo, Wanli Ma, Han Yan, Shuoting Wang, Jingxi Huang, Junwei Wang, Jian Zhang, Tianyu Zhang, Bo Feng, Yanling Zhu, Guangjin Pan","doi":"10.1186/s13619-025-00227-z","DOIUrl":"10.1186/s13619-025-00227-z","url":null,"abstract":"<p><p>Neutrophils are essential innate immune cells with unusual anti-microbial properties while dysfunctions of neutrophils lead to severe health problems such as lethal infections. Generation of neutrophils from human induced pluripotent stem cells (hiPSCs) is highly promising to produce off-the-shelf neutrophils for transfusion therapies. However, the anti-microbial potencies of hiPSCs derived neutrophils (iNEUs) remain less documented. Here, we develop a scalable approach to generate iNEUs in a chemical defined condition. iNEUs display typical neutrophil characters in terms of phagocytosis, migration, formation of neutrophil extracellular traps (NETs), etc. Importantly, iNEUs display a strong killing potency against various bacteria such as K.pneumoniae, P.aeruginosa, E.coli and S.aureus. Moreover, transfusions of iNEUs in mice with neutrophil dysfunction largely enhance their survival in lethal infection of different bacteria. Together, our data show that hiPSCs derived neutrophils hold strong anti-microbial potencies to protect severe infections under neutrophil dysfunction conditions.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"8"},"PeriodicalIF":4.0,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926315/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143668867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural stem cell heterogeneity in adult hippocampus.
IF 4
Cell Regeneration Pub Date : 2025-03-07 DOI: 10.1186/s13619-025-00222-4
Ziqi Liang, Nuomeng Jin, Weixiang Guo
{"title":"Neural stem cell heterogeneity in adult hippocampus.","authors":"Ziqi Liang, Nuomeng Jin, Weixiang Guo","doi":"10.1186/s13619-025-00222-4","DOIUrl":"10.1186/s13619-025-00222-4","url":null,"abstract":"<p><p>Adult neurogenesis is a unique cellular process of the ongoing generation of new neurons throughout life, which primarily occurs in the subgranular zone (SGZ) of the dentate gyrus (DG) and the subventricular zone (SVZ) of the lateral ventricle. In the adult DG, newly generated granule cells from neural stem cells (NSCs) integrate into existing neural circuits, significantly contributing to cognitive functions, particularly learning and memory. Recently, more and more studies have shown that rather than being a homogeneous population of identical cells, adult NSCs are composed of multiple subpopulations that differ in their morphology and function. In this study, we provide an overview of the origin, regional characteristics, prototypical morphology, and molecular factors that contribute to NSC heterogeneity. In particular, we discuss the molecular mechanisms underlying the balance between activation and quiescence of NSCs. In summary, this review highlights that deciphering NSC heterogeneity in the adult brain is a challenging but critical step in advancing our understanding of tissue-specific stem cells and the process of neurogenesis in the adult brain.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"6"},"PeriodicalIF":4.0,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11889326/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143572227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Prmt5 is essential for intestinal stem cell maintenance and homeostasis. Prmt5对肠干细胞的维持和稳态至关重要。
IF 4
Cell Regeneration Pub Date : 2025-02-05 DOI: 10.1186/s13619-024-00216-8
Li Yang, Xuewen Li, Chenyi Shi, Bing Zhao
{"title":"Prmt5 is essential for intestinal stem cell maintenance and homeostasis.","authors":"Li Yang, Xuewen Li, Chenyi Shi, Bing Zhao","doi":"10.1186/s13619-024-00216-8","DOIUrl":"10.1186/s13619-024-00216-8","url":null,"abstract":"<p><p>Intestinal homeostasis relies on the continuous renewal of intestinal stem cells (ISCs), which could be epigenetically regulated. While protein arginine methyltransferase 5 (Prmt5) is known to play a key role in multiple organs as an epigenetic modifier, its specific function in maintaining intestinal homeostasis remains to be elucidated. Here, we show that Prmt5 is highly expressed in mouse crypts. The deletion of Prmt5 results in ISCs deficiency, ectopic localization of Paneth cells, and spontaneous colitis. Mechanistically, Prmt5 sustains a high level of H3K27ac accumulation by inhibiting Hdac9 expression in the intestinal epithelium, and maintains the stemness of ISCs in a cell-autonomous manner. Notably, inhibition of histone deacetylases can rescue both self-renewal and differentiation capacities of Prmt5-depleted ISCs. These findings highlight Prmt5 as a critical regulator in intestinal epithelium development and tissue homeostasis.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"5"},"PeriodicalIF":4.0,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143188259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Salivary gland stem/progenitor cells: advancing from basic science to clinical applications.
IF 4
Cell Regeneration Pub Date : 2025-01-24 DOI: 10.1186/s13619-025-00221-5
Jimpi Langthasa, Li Guan, Shyam Lal Jinagal, Quynh-Thu Le
{"title":"Salivary gland stem/progenitor cells: advancing from basic science to clinical applications.","authors":"Jimpi Langthasa, Li Guan, Shyam Lal Jinagal, Quynh-Thu Le","doi":"10.1186/s13619-025-00221-5","DOIUrl":"10.1186/s13619-025-00221-5","url":null,"abstract":"<p><p>Salivary gland stem/progenitor cells (SSPCs) hold significant potential for regenerative medicine, especially for patients suffering from salivary gland dysfunction due to various causes such as radiation therapy, Sjögren's syndrome, and aging. This review provides a comprehensive overview of SSPCs, including their characteristics, isolation, culture techniques, differentiation pathways, and their role in tissue regeneration. Additionally, we highlight recent advances in cell- and tissue-based therapies, such as SSPC transplantation and bioengineered organ replacements. The challenges in translating SSPC research into effective clinical therapies are also discussed, alongside proposed solutions and future research directions.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"4"},"PeriodicalIF":4.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759724/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143037255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信