Identification of a 10-species microbial signature of inflammatory bowel disease by machine learning and external validation.

IF 4 Q2 CELL & TISSUE ENGINEERING
Shicheng Yu, Jun Li, Zhaofeng Ye, Mengxian Zhang, Xiaohua Guo, Xu Wang, Liansheng Liu, Yalong Wang, Xin Zhou, Wei Fu, Michael Q Zhang, Ye-Guang Chen
{"title":"Identification of a 10-species microbial signature of inflammatory bowel disease by machine learning and external validation.","authors":"Shicheng Yu, Jun Li, Zhaofeng Ye, Mengxian Zhang, Xiaohua Guo, Xu Wang, Liansheng Liu, Yalong Wang, Xin Zhou, Wei Fu, Michael Q Zhang, Ye-Guang Chen","doi":"10.1186/s13619-025-00246-w","DOIUrl":null,"url":null,"abstract":"<p><p>Genetic and microbial factors influence inflammatory bowel disease (IBD), prompting our study on non-invasive biomarkers for enhanced diagnostic precision. Using the XGBoost algorithm and variable analysis and the published metadata, we developed the 10-species signature XGBoost classification model (XGB-IBD10). By using distinct species signatures and prior machine and deep learning models and employing standardization methods to ensure comparability between metagenomic and 16S sequencing data, we constructed classification models to assess the XGB-IBD10 precision and effectiveness. XGB-IBD10 achieved a notable accuracy of 0.8722 in testing samples. In addition, we generated metagenomic sequencing data from collected 181 stool samples to validate our findings, and the model reached an accuracy of 0.8066. The model's performance significantly improved when trained on high-quality data from the Chinese population. Furthermore, the microbiome-based model showed promise in predicting active IBD. Overall, this study identifies promising non-invasive biomarkers associated with IBD, which could greatly enhance diagnostic accuracy.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"32"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259524/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-025-00246-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Genetic and microbial factors influence inflammatory bowel disease (IBD), prompting our study on non-invasive biomarkers for enhanced diagnostic precision. Using the XGBoost algorithm and variable analysis and the published metadata, we developed the 10-species signature XGBoost classification model (XGB-IBD10). By using distinct species signatures and prior machine and deep learning models and employing standardization methods to ensure comparability between metagenomic and 16S sequencing data, we constructed classification models to assess the XGB-IBD10 precision and effectiveness. XGB-IBD10 achieved a notable accuracy of 0.8722 in testing samples. In addition, we generated metagenomic sequencing data from collected 181 stool samples to validate our findings, and the model reached an accuracy of 0.8066. The model's performance significantly improved when trained on high-quality data from the Chinese population. Furthermore, the microbiome-based model showed promise in predicting active IBD. Overall, this study identifies promising non-invasive biomarkers associated with IBD, which could greatly enhance diagnostic accuracy.

通过机器学习和外部验证鉴定炎症性肠病的10种微生物特征。
遗传和微生物因素影响炎症性肠病(IBD),促使我们研究非侵入性生物标志物以提高诊断精度。利用XGBoost算法和变量分析,结合已发表的元数据,建立了10种特征的XGBoost分类模型(XGB-IBD10)。通过使用不同的物种特征和先验机器和深度学习模型,并采用标准化方法确保宏基因组和16S测序数据之间的可比性,我们构建了分类模型来评估XGB-IBD10的精度和有效性。XGB-IBD10在测试样本中取得了0.8722的显著精度。此外,我们从收集的181份粪便样本中生成宏基因组测序数据来验证我们的发现,该模型达到了0.8066的精度。当使用来自中国人口的高质量数据进行训练时,该模型的性能显著提高。此外,基于微生物组的模型在预测活动性IBD方面显示出希望。总的来说,本研究确定了与IBD相关的有前途的非侵入性生物标志物,可以大大提高诊断准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Regeneration
Cell Regeneration Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics: ◎ Embryonic stem cells ◎ Induced pluripotent stem cells ◎ Tissue-specific stem cells ◎ Tissue or organ regeneration ◎ Methodology ◎ Biomaterials and regeneration ◎ Clinical translation or application in medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信