Cell Regeneration最新文献

筛选
英文 中文
METTL3 restricts RIPK1-dependent cell death via the ATF3-cFLIP axis in the intestinal epithelium. METTL3 在肠上皮细胞中通过 ATF3-cFLIP 轴限制 RIPK1 依赖性细胞死亡。
IF 4
Cell Regeneration Pub Date : 2024-08-02 DOI: 10.1186/s13619-024-00197-8
Meimei Huang, Xiaodan Wang, Mengxian Zhang, Yuan Liu, Ye-Guang Chen
{"title":"METTL3 restricts RIPK1-dependent cell death via the ATF3-cFLIP axis in the intestinal epithelium.","authors":"Meimei Huang, Xiaodan Wang, Mengxian Zhang, Yuan Liu, Ye-Guang Chen","doi":"10.1186/s13619-024-00197-8","DOIUrl":"10.1186/s13619-024-00197-8","url":null,"abstract":"<p><p>Intestinal epithelial cells (IECs) are pivotal for maintaining intestinal homeostasis through self-renewal, proliferation, differentiation, and regulated cell death. While apoptosis and necroptosis are recognized as distinct pathways, their intricate interplay remains elusive. In this study, we report that Mettl3-mediated m<sup>6</sup>A modification maintains intestinal homeostasis by impeding epithelial cell death. Mettl3 knockout induces both apoptosis and necroptosis in IECs. Targeting different modes of cell death with specific inhibitors unveils that RIPK1 kinase activity is critical for the cell death triggered by Mettl3 knockout. Mechanistically, this occurs via the m<sup>6</sup>A-mediated transcriptional regulation of Atf3, a transcription factor that directly binds to Cflar, the gene encoding the anti-cell death protein cFLIP. cFLIP inhibits RIPK1 activity, thereby suppressing downstream apoptotic and necroptotic signaling. Together, these findings delineate the essential role of the METTL3-ATF3-cFLIP axis in homeostatic regulation of the intestinal epithelium by blocking RIPK1 activity.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"14"},"PeriodicalIF":4.0,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297012/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141874324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The emerging and diverse roles of F-box proteins in spermatogenesis and male infertility. F-box 蛋白在精子发生和男性不育中新出现的多种作用。
IF 4
Cell Regeneration Pub Date : 2024-06-26 DOI: 10.1186/s13619-024-00196-9
Xuan Zhuang, Jun Ruan, Canquan Zhou, Zhiming Li
{"title":"The emerging and diverse roles of F-box proteins in spermatogenesis and male infertility.","authors":"Xuan Zhuang, Jun Ruan, Canquan Zhou, Zhiming Li","doi":"10.1186/s13619-024-00196-9","DOIUrl":"10.1186/s13619-024-00196-9","url":null,"abstract":"<p><p>F-box proteins play essential roles in various cellular processes of spermatogenesis by means of ubiquitylation and subsequent target protein degradation. They are the substrate-recognition subunits of SKP1-cullin 1-F-box protein (SCF) E3 ligase complexes. Dysregulation of F‑box protein‑mediated proteolysis could lead to male infertility in humans and mice. The emerging studies revealed the physiological function, pathological evidence, and biochemical substrates of F-box proteins in the development of male germ cells, which urging us to review the current understanding of how F‑box proteins contribute to spermatogenesis. More functional and mechanistic study will be helpful to define the roles of F-box protein in spermatogenesis, which will pave the way for the logical design of F-box protein-targeted diagnosis and therapies for male infertility, as the spermatogenic role of many F-box proteins remains elusive.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"13"},"PeriodicalIF":4.0,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11199460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141449842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Macrophages in tissue repair and regeneration: insights from zebrafish. 组织修复和再生中的巨噬细胞:斑马鱼的启示。
Cell Regeneration Pub Date : 2024-06-11 DOI: 10.1186/s13619-024-00195-w
Changlong Zhao, Zhiyong Yang, Yunbo Li, Zilong Wen
{"title":"Macrophages in tissue repair and regeneration: insights from zebrafish.","authors":"Changlong Zhao, Zhiyong Yang, Yunbo Li, Zilong Wen","doi":"10.1186/s13619-024-00195-w","DOIUrl":"10.1186/s13619-024-00195-w","url":null,"abstract":"<p><p>Macrophages play crucial and versatile roles in regulating tissue repair and regeneration upon injury. However, due to their complex compositional heterogeneity and functional plasticity, deciphering the nature of different macrophage subpopulations and unraveling their dynamics and precise roles during the repair process have been challenging. With its distinct advantages, zebrafish (Danio rerio) has emerged as an invaluable model for studying macrophage development and functions, especially in tissue repair and regeneration, providing valuable insights into our understanding of macrophage biology in health and diseases. In this review, we present the current knowledge and challenges associated with the role of macrophages in tissue repair and regeneration, highlighting the significant contributions made by zebrafish studies. We discuss the unique advantages of the zebrafish model, including its genetic tools, imaging techniques, and regenerative capacities, which have greatly facilitated the investigation of macrophages in these processes. Additionally, we outline the potential of zebrafish research in addressing the remaining challenges and advancing our understanding of the intricate interplay between macrophages and tissue repair and regeneration.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11166613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141300105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
New progress in roles of TGF-β signaling crosstalks in cellular functions, immunity and diseases. TGF-β 信号串在细胞功能、免疫和疾病中的作用研究取得新进展。
Cell Regeneration Pub Date : 2024-05-23 DOI: 10.1186/s13619-024-00194-x
Shuchen Gu, Rik Derynck, Ye-Guang Chen, Xin-Hua Feng
{"title":"New progress in roles of TGF-β signaling crosstalks in cellular functions, immunity and diseases.","authors":"Shuchen Gu, Rik Derynck, Ye-Guang Chen, Xin-Hua Feng","doi":"10.1186/s13619-024-00194-x","DOIUrl":"10.1186/s13619-024-00194-x","url":null,"abstract":"<p><p>The family of secreted dimeric proteins known as the Transforming Growth Factor-β (TGF-β) family plays a critical role in facilitating intercellular communication within multicellular animals. A recent symposium on TGF-β Biology - Signaling, Development, and Diseases, held on December 19-21, 2023, in Hangzhou, China, showcased some latest advances in our understanding TGF-β biology and also served as an important forum for scientific collaboration and exchange of ideas. More than twenty presentations and discussions at the symposium delved into the intricate mechanisms of TGF-β superfamily signaling pathways, their roles in normal development and immunity, and the pathological conditions associated with pathway dysregulation.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11116299/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141081056","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Forkhead box O proteins: steering the course of stem cell fate. 叉头盒 O 蛋白:引导干细胞命运的进程。
Cell Regeneration Pub Date : 2024-03-11 DOI: 10.1186/s13619-024-00190-1
Mengdi Cheng, Yujie Nie, Min Song, Fulin Chen, Yuan Yu
{"title":"Forkhead box O proteins: steering the course of stem cell fate.","authors":"Mengdi Cheng, Yujie Nie, Min Song, Fulin Chen, Yuan Yu","doi":"10.1186/s13619-024-00190-1","DOIUrl":"10.1186/s13619-024-00190-1","url":null,"abstract":"<p><p>Stem cells are pivotal players in the intricate dance of embryonic development, tissue maintenance, and regeneration. Their behavior is delicately balanced between maintaining their pluripotency and differentiating as needed. Disruptions in this balance can lead to a spectrum of diseases, underscoring the importance of unraveling the complex molecular mechanisms that govern stem cell fate. Forkhead box O (FOXO) proteins, a family of transcription factors, are at the heart of this intricate regulation, influencing a myriad of cellular processes such as survival, metabolism, and DNA repair. Their multifaceted role in steering the destiny of stem cells is evident, as they wield influence over self-renewal, quiescence, and lineage-specific differentiation in both embryonic and adult stem cells. This review delves into the structural and regulatory intricacies of FOXO transcription factors, shedding light on their pivotal roles in shaping the fate of stem cells. By providing insights into the specific functions of FOXO in determining stem cell fate, this review aims to pave the way for targeted interventions that could modulate stem cell behavior and potentially revolutionize the treatment and prevention of diseases.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10928065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140101097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Models for calcific aortic valve disease in vivo and in vitro. 钙化性主动脉瓣疾病的体内和体外模型。
Cell Regeneration Pub Date : 2024-03-01 DOI: 10.1186/s13619-024-00189-8
Zijin Zhu, Zhirong Liu, Donghui Zhang, Li Li, Jianqiu Pei, Lin Cai
{"title":"Models for calcific aortic valve disease in vivo and in vitro.","authors":"Zijin Zhu, Zhirong Liu, Donghui Zhang, Li Li, Jianqiu Pei, Lin Cai","doi":"10.1186/s13619-024-00189-8","DOIUrl":"10.1186/s13619-024-00189-8","url":null,"abstract":"<p><p>Calcific Aortic Valve Disease (CAVD) is prevalent among the elderly as the most common valvular heart disease. Currently, no pharmaceutical interventions can effectively reverse or prevent CAVD, making valve replacement the primary therapeutic recourse. Extensive research spanning decades has contributed to the establishment of animal and in vitro cell models, which facilitates a deeper understanding of the pathophysiological progression and underlying mechanisms of CAVD. In this review, we provide a comprehensive summary and analysis of the strengths and limitations associated with commonly employed models for the study of valve calcification. We specifically emphasize the advancements in three-dimensional culture technologies, which replicate the structural complexity of the valve. Furthermore, we delve into prospective recommendations for advancing in vivo and in vitro model studies of CAVD.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10904700/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Asymmetric division of stem cells and its cancer relevance. 干细胞的非对称分裂及其与癌症的关系
Cell Regeneration Pub Date : 2024-02-27 DOI: 10.1186/s13619-024-00188-9
Shanshan Chao, Huiwen Yan, Pengcheng Bu
{"title":"Asymmetric division of stem cells and its cancer relevance.","authors":"Shanshan Chao, Huiwen Yan, Pengcheng Bu","doi":"10.1186/s13619-024-00188-9","DOIUrl":"10.1186/s13619-024-00188-9","url":null,"abstract":"<p><p>Asymmetric division is a fundamental process for generating cell diversity and maintaining the stem cell population. During asymmetric division, proteins, organelles, and even RNA are distributed unequally between the two daughter cells, determining their distinct cell fates. The mechanisms orchestrating this process are extremely complex. Dysregulation of asymmetric division can potentially trigger cancer progression. Cancer stem cells, in particular, undergo asymmetric division, leading to intra-tumoral heterogeneity, which contributes to treatment refractoriness. In this review, we delve into the cellular and molecular mechanisms that govern asymmetric division and explore its relevance to tumorigenesis.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10897644/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reevaluating Golgi fragmentation and its implications in wound repair. 重新评估高尔基体碎片及其在伤口修复中的意义
Cell Regeneration Pub Date : 2024-02-13 DOI: 10.1186/s13619-024-00187-w
Chandra Sugiarto Wijaya, Suhong Xu
{"title":"Reevaluating Golgi fragmentation and its implications in wound repair.","authors":"Chandra Sugiarto Wijaya, Suhong Xu","doi":"10.1186/s13619-024-00187-w","DOIUrl":"10.1186/s13619-024-00187-w","url":null,"abstract":"<p><p>The Golgi Apparatus (GA) is pivotal in vesicle sorting and protein modifications within cells. Traditionally, the GA has been described as a perinuclear organelle consisting of stacked cisternae forming a ribbon-like structure. Changes in the stacked structure or the canonical perinuclear localization of the GA have been referred to as \"GA fragmentation\", a term widely employed in the literature to describe changes in GA morphology and distribution. However, the precise meaning and function of GA fragmentation remain intricate. This review aims to demystify this enigmatic phenomenon, dissecting the diverse morphological changes observed and their potential contributions to cellular wound repair and regeneration. Through a comprehensive analysis of current research, we hope to pave the way for future advancements in GA research and their important role in physiological and pathological conditions.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10864233/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: RhoA/Rock activation represents a new mechanism for inactivating Wnt/β-catenin signaling in the aging-associated bone loss. 更正:RhoA/Rock 激活是在衰老相关骨质流失中使 Wnt/β-catenin 信号失活的一种新机制。
Cell Regeneration Pub Date : 2024-02-10 DOI: 10.1186/s13619-023-00185-4
Wei Shi, Chengyun Xu, Ying Gong, Jirong Wang, Qianlei Ren, Ziyi Yan, Liu Mei, Chao Tang, Xing Ji, Xinhua Hu, Meiyu Qv, Musaddique Hussain, Ling-Hui Zeng, Ximei Wu
{"title":"Correction: RhoA/Rock activation represents a new mechanism for inactivating Wnt/β-catenin signaling in the aging-associated bone loss.","authors":"Wei Shi, Chengyun Xu, Ying Gong, Jirong Wang, Qianlei Ren, Ziyi Yan, Liu Mei, Chao Tang, Xing Ji, Xinhua Hu, Meiyu Qv, Musaddique Hussain, Ling-Hui Zeng, Ximei Wu","doi":"10.1186/s13619-023-00185-4","DOIUrl":"10.1186/s13619-023-00185-4","url":null,"abstract":"","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10858003/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139711734","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondrial-to-nuclear communications through multiple routes regulate cardiomyocyte proliferation. 线粒体与细胞核之间的通讯通过多种途径调节心肌细胞的增殖。
IF 4
Cell Regeneration Pub Date : 2024-01-31 DOI: 10.1186/s13619-024-00186-x
Xinhang Li, Yalin Zhu, Pilar Ruiz-Lozano, Ke Wei
{"title":"Mitochondrial-to-nuclear communications through multiple routes regulate cardiomyocyte proliferation.","authors":"Xinhang Li, Yalin Zhu, Pilar Ruiz-Lozano, Ke Wei","doi":"10.1186/s13619-024-00186-x","DOIUrl":"10.1186/s13619-024-00186-x","url":null,"abstract":"<p><p>The regenerative capacity of the adult mammalian heart remains a formidable challenge in biological research. Despite extensive investigations into the loss of regenerative potential during evolution and development, unlocking the mechanisms governing cardiomyocyte proliferation remains elusive. Two recent groundbreaking studies have provided fresh perspectives on mitochondrial-to-nuclear communication, shedding light on novel factors that regulate cardiomyocyte proliferation. The studies identified two mitochondrial processes, fatty acid oxidation and protein translation, as key players in restricting cardiomyocyte proliferation. Inhibition of these processes led to increased cell cycle activity in cardiomyocytes, mediated by reduction in H3k4me3 levels through accumulated α-ketoglutarate (αKG), and activation of the mitochondrial unfolded protein response (UPR<sup>mt</sup>), respectively. In this research highlight, we discuss the novel insights into mitochondrial-to-nuclear communication presented in these studies, the broad implications in cardiomyocyte biology and cardiovascular diseases, as well as the intriguing scientific questions inspired by the studies that may facilitate future investigations into the detailed molecular mechanisms of cardiomyocyte metabolism, proliferation, and mitochondrial-to-nuclear communications.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"13 1","pages":"2"},"PeriodicalIF":4.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10828256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139641700","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信