{"title":"METTL3 inhibits primed-to-naïve transition of pluripotent stem cells through m<sup>6</sup>A-YTHDF2-pluripotency/Gstp1 mRNA degradation axis.","authors":"Sa Li, Jiajie Hao, Guangliang Hong, Hongzhi Dong, He Liu, Lingmei Jin, Zhihao Zhang, Haoyu Wu, Mingli Hu, Rujin Huang, Guanzheng Luo, Jiangping He, Jiekai Chen, Kaixin Wu","doi":"10.1186/s13619-025-00241-1","DOIUrl":null,"url":null,"abstract":"<p><p>N6-methyladenosine (m<sup>6</sup>A) plays crucial roles in development and cellular reprogramming. During embryonic development, pluripotency transitions from a naïve to a primed state, and modeling the reverse primed-to-naïve transition (PNT) provides a valuable framework for investigating pluripotency regulation. Here, we show that inhibiting METTL3 significantly promotes PNT in an m<sup>6</sup>A-dependent manner. Mechanistically, we found that suppressing METTL3 and YTHDF2 prolongs the lifetimes of pluripotency-associated mRNAs, such as Nanog and Sox2, during PNT. In addition, Gstp1 was identified as a downstream target of METTL3 inhibition and YTHDF2 knockout. Gstp1 overexpression enhances PNT, whereas its inhibition impedes the transition. Overall, our findings suggest that YTHDF2 facilitates the removal of pluripotency gene transcripts and Gstp1, thereby promoting PNT reprogramming through m<sup>6</sup>A-mediated posttranscriptional control.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"19"},"PeriodicalIF":4.0000,"publicationDate":"2025-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12116966/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-025-00241-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
N6-methyladenosine (m6A) plays crucial roles in development and cellular reprogramming. During embryonic development, pluripotency transitions from a naïve to a primed state, and modeling the reverse primed-to-naïve transition (PNT) provides a valuable framework for investigating pluripotency regulation. Here, we show that inhibiting METTL3 significantly promotes PNT in an m6A-dependent manner. Mechanistically, we found that suppressing METTL3 and YTHDF2 prolongs the lifetimes of pluripotency-associated mRNAs, such as Nanog and Sox2, during PNT. In addition, Gstp1 was identified as a downstream target of METTL3 inhibition and YTHDF2 knockout. Gstp1 overexpression enhances PNT, whereas its inhibition impedes the transition. Overall, our findings suggest that YTHDF2 facilitates the removal of pluripotency gene transcripts and Gstp1, thereby promoting PNT reprogramming through m6A-mediated posttranscriptional control.
Cell RegenerationBiochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍:
Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics:
◎ Embryonic stem cells
◎ Induced pluripotent stem cells
◎ Tissue-specific stem cells
◎ Tissue or organ regeneration
◎ Methodology
◎ Biomaterials and regeneration
◎ Clinical translation or application in medicine