Resolving the spatial organization of fetal liver hematopoiesis by SeekSpace.

IF 4 Q2 CELL & TISSUE ENGINEERING
Xinyu Thomas Tang, Lin Veronica Chen, Bo O Zhou
{"title":"Resolving the spatial organization of fetal liver hematopoiesis by SeekSpace.","authors":"Xinyu Thomas Tang, Lin Veronica Chen, Bo O Zhou","doi":"10.1186/s13619-025-00234-0","DOIUrl":null,"url":null,"abstract":"<p><p>The fetal liver is the primary site for the expansion of hematopoietic stem and progenitor cells (HSPCs) during fetal hematopoiesis. However, the spatial organization of different hematopoietic progenitor populations within the fetal liver remains poorly characterized. In this study, we utilized SeekSpace, a high-resolution single-nucleus spatial transcriptomics platform, to map the spatial distribution of hematopoietic stem cells and multipotent progenitor cells (HSC/MPPs) and downstream restricted progenitors (RPs) in relation to other hematopoietic and stromal cell populations in the fetal liver at embryonic day 13.5. Using SeekSpace, we constructed a detailed single-cell spatial transcriptomic atlas of fetal liver hematopoiesis, revealing that both HSC/MPPs and many RPs undergo active expansion in the fetal liver, a process distinct from their behavior in adult bone marrow. Proximity analysis and in situ imaging demonstrated that HSC/MPPs expansion occurs in close association with macrophages and endothelial cells throughout the fetal liver, supported by signaling pathways involving IGF and collagen. In contrast, RPs exhibited no specific spatial proximity to other cell populations during their expansion. Collectively, this study provides a comprehensive resource for understanding the spatial and molecular mechanisms underlying HSC/MPPs and RP expansion during fetal liver hematopoiesis.</p>","PeriodicalId":9811,"journal":{"name":"Cell Regeneration","volume":"14 1","pages":"15"},"PeriodicalIF":4.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12014969/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Regeneration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s13619-025-00234-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

The fetal liver is the primary site for the expansion of hematopoietic stem and progenitor cells (HSPCs) during fetal hematopoiesis. However, the spatial organization of different hematopoietic progenitor populations within the fetal liver remains poorly characterized. In this study, we utilized SeekSpace, a high-resolution single-nucleus spatial transcriptomics platform, to map the spatial distribution of hematopoietic stem cells and multipotent progenitor cells (HSC/MPPs) and downstream restricted progenitors (RPs) in relation to other hematopoietic and stromal cell populations in the fetal liver at embryonic day 13.5. Using SeekSpace, we constructed a detailed single-cell spatial transcriptomic atlas of fetal liver hematopoiesis, revealing that both HSC/MPPs and many RPs undergo active expansion in the fetal liver, a process distinct from their behavior in adult bone marrow. Proximity analysis and in situ imaging demonstrated that HSC/MPPs expansion occurs in close association with macrophages and endothelial cells throughout the fetal liver, supported by signaling pathways involving IGF and collagen. In contrast, RPs exhibited no specific spatial proximity to other cell populations during their expansion. Collectively, this study provides a comprehensive resource for understanding the spatial and molecular mechanisms underlying HSC/MPPs and RP expansion during fetal liver hematopoiesis.

SeekSpace解决胎儿肝脏造血的空间组织。
在胎儿造血过程中,胎儿肝脏是造血干细胞和祖细胞(HSPCs)扩增的主要部位。然而,胎儿肝脏内不同造血祖群的空间组织特征仍然很差。在这项研究中,我们利用高分辨率的单核空间转录组学平台SeekSpace,绘制了胚胎13.5天胎儿肝脏中造血干细胞、多能祖细胞(HSC/ mpp)和下游限制性祖细胞(RPs)与其他造血和基质细胞群体的空间分布。利用SeekSpace,我们构建了胎儿肝脏造血的详细单细胞空间转录组图谱,揭示了HSC/ mpp和许多RPs在胎儿肝脏中都经历了积极的扩张,这一过程与它们在成人骨髓中的行为不同。接近分析和原位成像表明,HSC/ mpp的扩增与整个胎儿肝脏的巨噬细胞和内皮细胞密切相关,并得到涉及IGF和胶原的信号通路的支持。相反,rp在其扩增过程中没有表现出与其他细胞群体的特定空间接近性。总的来说,本研究为理解胎儿肝脏造血过程中HSC/ mpp和RP扩张的空间和分子机制提供了全面的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cell Regeneration
Cell Regeneration Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
5.80
自引率
0.00%
发文量
42
审稿时长
35 days
期刊介绍: Cell Regeneration aims to provide a worldwide platform for researches on stem cells and regenerative biology to develop basic science and to foster its clinical translation in medicine. Cell Regeneration welcomes reports on novel discoveries, theories, methods, technologies, and products in the field of stem cells and regenerative research, the journal is interested, but not limited to the following topics: ◎ Embryonic stem cells ◎ Induced pluripotent stem cells ◎ Tissue-specific stem cells ◎ Tissue or organ regeneration ◎ Methodology ◎ Biomaterials and regeneration ◎ Clinical translation or application in medicine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信